Introduction
Parkinsonism, defined as bradykinesia in combination with either rest tremor, rigidity or both,1 classically arises in the context of Parkinson’s disease (PD). The major pathology is represented by Lewy bodies containing alpha-synuclein and associated dopamine cell loss in the substantia nigra leading to dysfunction of basal ganglia circuitry responsible for motor control. However, parkinsonism due to a wide range of possible causes also occurs in up to one-third of patients taking antipsychotic medications.2 This syndrome may significantly impair function and quality of life.
Pathophysiology of parkinsonism
In PD, it is proposed that there is an imbalance of activation of excitatory and inhibitory pathways involving the basal ganglia (a collection of subcortical grey matter nuclei including the substantia nigra, globus pallidus, subthalamic nucleus and the striatum comprising the putamen and caudate nucleus), thalamus and motor cortex governing motor output.3 4 Dopamine usually has an excitatory influence on the direct pathway via D1 receptors to facilitate cortically initiated movements and an inhibitory influence on the indirect pathway via D2 receptors, which usually impedes voluntary movement through thalamic inhibition.3 This pathway is summarised in figure 1.
In the case of PD, gradual degeneration of dopaminergic substantia nigra pars compacta neurons and their projections to the striatum leads to motor symptoms.3 A range of dopaminergic medications that either increase dopamine levels through a variety of mechanisms or stimulate dopamine receptors are used to address these symptoms. Conversely, any medication that either blocks dopamine D2 receptors or reduces dopamine release may result in parkinsonism.5 Other aetiologies of parkinsonism typically produce motor symptoms through damage to the basal ganglia, for example, through vascular injury in the case of vascular parkinsonism or normal pressure hydrocephalus.
A degree of parkinsonism is frequent in the elderly and may be due to an age-related decline in the number of nigrostriatal neurons.6 7 However, neurodegenerative pathologies also accumulate with age. A recent study of over 1400 patients followed up for an average 8.5 years until death demonstrated that the majority (94.1%) had at least one pathology on autopsy, the average individual had three pathologies and 25% had PD pathology.8 The other pathologies detected included Alzheimer’s pathology, cerebral amyloid angiopathy, cerebrovascular disease, hippocampal sclerosis and TAR DNA-binding protein 43.8 A majority (53.9%) of this cohort had developed parkinsonism by their last visit.8 Interestingly, this study also highlighted that a proportion of patients with both PD and other pathologies did not demonstrate any clinical parkinsonism.8
Beyond dopamine: the role of other neurotransmitters in parkinsonism and psychosis
Other neurotransmitter systems are also implicated in PD motor symptoms and drug-induced parkinsonism (DIP) and may help explain why DIP may occur with medications that do not have direct effects on dopamine levels or receptors. For example, due to the interrelationship between dopaminergic and cholinergic pathways, parkinsonism has been conceptualised as resulting from relative dopamine deficiency and relative acetylcholine excess.9 This hypothesis is supported by observations that parkinsonism is aggravated by centrally acting cholinergic medications and improved by anticholinergic medications.10 Gait impairment in PD is pathophysiologically complex and freezing of gait, specifically, may be associated with dysfunction in the noradrenergic and cholinergic systems.4
Similarly, contemporary understanding of neurotransmitter systems involved in psychosis has evolved beyond dopamine dysregulation with multiple other neurotransmitters associated with the syndrome. There is evidence that a relative hypocholinergic state favours the emergence of psychotic symptoms in PD.11 PD psychosis has also been conceptualised to reflect an imbalance between dopamine and serotonin neurotransmission.12 Atypical antipsychotics, such as quetiapine and clozapine, demonstrate significant serotonin receptor antagonism.13 This serotonin receptor activity differentiates typical from atypical antipsychotics and was touted as resulting in lower extrapyramidal side effects (EPSE) such as parkinsonism both due to the downstream effect on dopamine release and the need for a lower D2 receptor occupancy for antipsychotic efficacy. With the ongoing use of atypical antipsychotics, it has been demonstrated that there is still a risk of causing EPSE, and the ‘atypical’ nature may be lost with dose increases.
Drug-induced parkinsonism
DIP is defined as the presence of parkinsonism without a history of parkinsonism before the use of the offending drug and onset of parkinsonian symptoms during use of the drug.5 DIP is relevant to patients to a broad range of patients since antipsychotic agents are prescribed for a range of psychiatric indications including adjunctive therapy for depression, anxiety disorders, personality disorders and behavioural and psychological symptoms of dementia.14 This perhaps reflects attitudes that antipsychotic medications are less addictive than, for example, benzodiazepines and may even be perceived as safer. It is possible that patients prescribed these medications for other indications are not properly appraised of the potential risks.14
While antipsychotic medication is a common cause of DIP, other medications have been causally associated with parkinsonism including antiemetic agents,5 antidepressants (selective serotonin reuptake inhibitors),15 lithium16 and calcium channel blocking agents.5
Although DIP is less frequent with atypical antipsychotics than typical agents such as haloperidol,17 it is still commonly seen. A recent Cochrane review concluded that DIP has been associated with all second-generation antipsychotics.18
There is significant individual variability in the propensity to develop parkinsonism in patients treated with causally associated medications which can be only partially explained by reported polymorphisms in genes involved in dopamine transmission in patients who develop DIP,19 or unmasking of subclinical PD or an atypical parkinsonian syndrome.20 Patients with dementia with Lewy bodies (DLB), a closely related synucleinopathy characterised by early cognitive symptoms, are exquisitely sensitive to the effects of dopamine receptor blocking agents.21
Treatment with a dopamine receptor blocker or dopamine depleting agent in a dose or time course consistent with DIP is an exclusion criterion for PD1 and tardive parkinsonism can persist for months or years after cessation of a dopamine receptor blocking agent.22 However, patients who continue to demonstrate parkinsonian features long after causative medications are ceased are thought more likely to have subclinical PD unmasked by neuroleptic exposure.23