Discussion
In this cross-sectional study of men from the HPFS-ProPD study, we found that individuals with non-motor features suggestive of ProPD had worse global cognitive performance than men without these signs. Impairment was particularly pronounced for those with concurrent hyposmia, pRBD and constipation, who are at higher risk of PD. In addition, hyposmic individuals without other prodromal features performed worse on memory tests, whereas individuals with at least one feature in addition to hyposmia were particularly affected in language/verbal fluency, and, to a lesser extent, in executive function and memory. Hyposmia combined with at least one additional sign was associated with higher odds of poor SCD. Finally, as expected, individuals with confirmed PD performed worse than the rest of the groups in both objective and subjective assessments.
The results of our objective cognitive function analyses provide important insight to further characterise cognitive function in ProPD and its relationship with constipation, pRBD, and hyposmia, key non-motor features of ProPD. A recent population-based study in Greece found that higher probability of ProPD was associated with lower cognitive performance in all cognitive domains, and higher probability of mild cognitive impairment.8 Another prospective study of 468 participants in Germany showed that future PD converters had lower global cognition scores compared with non-converters years before clinical diagnosis.25 Similarly, in a case–control study nested in the Rotterdam Study, a subtle decline in executive cognitive functions was found to be present up to 7 years before PD diagnosis26 and an association between poor cognitive functioning and increased risk of incident parkinsonism, including probable PD, was confirmed in a longitudinal analysis of the same cohort.6 Our study builds on these findings by describing the relationship between specific non-motor features of ProPD with poor cognitive function. Similar to our study, results from the PARS study showed that cognitive performance on global cognition, executive function and memory was worse in individuals who were free of PD but had hyposmia and impaired dopamine transporter binding reduction (important predictors of PD).7 Results from the same study found that individuals who converted to PD during follow-up, had worse cognitive function at baseline compared with non-converters.27 Results from the Tübinger Evaluation of Risk Factors for Early Detection of Neurodegeneration (TREND) study showed that self-reported forgetfulness and word-finding difficulty were more common in individuals with hyposmia and RBD.28 Our study expands on these studies by assessing hyposmia, RBD and constipation in the same population and exploring their co-occurrence. In sum, the observations of these studies are consistent with our findings; global cognitive dysfunction or impairment in one of several cognitive domains may be a sign of ProPD when occurring in the presence of other relevant non-motor features. Our study addressed some of the limitations of these previous studies by using more extensive measures of cognitive function and robustly assessing some of the most common non-motor ProPD features individually and in combination.
Our subjective cognitive performance results are consistent with those based on objective cognitive assessments and with the few studies that have subjectively assessed cognition in ProPD. A previous nested case–control study evaluated SCD in ProPD and found that patients with PD started reporting memory complaints 1.5 years before diagnosis.26 Another study using a primary care database found that memory problems reported by a clinician were more common in patients with PD compared with those without PD at 2 years before diagnosis.29 Using a more detailed assessment of current functional abilities, we provide further evidence that SCD might be present in individuals with features suggestive of ProPD, particularly in individuals with concurrent hyposmia, constipation and pRBD. Our results are also in line with previous studies on cognitive function in patients with PD. Robust evidence indicates that, in comparison with age-matched groups without PD, individuals with PD exhibit more rapid decline in many cognitive domains; these are particularly pronounced in the executive, attentional and visuospatial domains, and, to a lesser extent, memory.9 In addition, olfactory dysfunction in patients with PD has been associated with cognitive impairment30 and dementia conversion.31 Because all participants with confirmed PD in our investigation were hyposmic, we could not determine whether hyposmia in PD is associated with more severe cognitive impairment.
Olfactory dysfunction and cognitive impairment are common features not only of ProPD but also of early Alzheimer disease (AD)32 and diffuse Lewy body disease (DLB)33; hyposmic individuals in our study might therefore be at higher risk of cognitive decline and it is possible that some of them may develop AD or DLB. The combination of hyposmia, constipation and pRBD, however, has been strongly associated with PD in this cohort,12 which suggests that men with these features are more likely to be in the prodromal phase of PD rather than AD. In addition, a few studies have suggested a link between cognitive impairment in RBD and the subsequent development of PD or DLB.34 35 RBD patients with cognitive impairment are more likely to exhibit non-amnestic cognitive impairment rather than an amnesic phenotype, which seems to be more typical in AD.36 Therefore, since DLB is notably less common than PD,37 the presence of additional prodromal features such as RBD in hyposmic individuals and the specific nature of their cognitive impairment might help to differentiate those who will potentially develop AD from those who will potentially develop PD.
The evolution and heterogeneity of cognitive impairment in PD mirrors the complexity of the disease process.38 39 In addition to α-synuclein, tau and amyloid pathologies, many other mechanisms are likely to contribute to cognitive decline, including different neurotransmitter systems, early synaptic changes, inflammation and mitochondrial dysfunction.9 The roles of these and other potentially relevant mechanisms need to be explored further.
Limitations of the current analysis should be considered. First, results reported here are cross-sectional; prospective follow-up of our cohort will be necessary to better characterise the role of cognitive performance in predicting conversion to PD and the development of further cognitive decline, particularly in individuals with additional prodromal features. Second, due to the observational nature of the investigation and use of questionnaires (and/or cognitive test batteries), it is possible that unmeasured or residual confounding and measurement error may be biasing our results. For instance, the performance of individuals with diagnosed PD could have been affected by PD medications, and our assessment of the language domain was based on a single test which may also capture elements of executive function and processing speed. Third, the average age of our cohort at assessment for prodromal features was somewhat older than the average age of onset of PD, and our study was conducted among a homogeneous, mostly white male population of health professionals, which could affect the generalisability of the results. Finally, the response rate for the cognitive interviews was relatively low in both hyposmic and non-hyposmic individuals. However, characteristics between responders and non-responders were similar, indicating that non-response likely caused minimal bias in the results.
Strengths of our study are its population-based design and the assessment of multiple prodromal features of PD and their co-occurrence. In addition, potential confounders were robustly assessed, which allowed for careful control of confounding, and well-validated instruments were used to assess both objective and a subjective cognitive performance. The consistency of the results obtained suggests that SCD might have a role in screening of large populations due to its simplicity, low cost and short application time. Considerable evidence demonstrates that SCD predicts future cognitive decline in the general population,40 so it might be a harbinger of further cognitive decline in PD.
In conclusion, our study suggests that cognitive impairment is common in individuals with hyposmia, particularly when additional non-motor features of PD, such as constipation and pRBD, are present. The prognostic significance of both subjective and objective measures of cognitive performance and their utility in clinical practice will be determined through longitudinal follow-up currently underway.