Introduction
Brain arteriovenous malformation (bAVM) is a rare disease with a population prevalence of 10–18 per 100 000 people.1–3 These complex tangles of abnormal, dilated vessels are a significant source of intracranial haemorrhage (ICH) with annual risk of rupture estimated to be 1%–2% per year for previously unruptured bAVMs.4–8
ICH is the most significant source of morbidity and mortality in patients with bAVMs.9 Currently, interventional therapies (surgical resection, stereotactic radiosurgery and endovascular embolisation) are the only treatments that reduce risk of bAVM rupture.7 9–11 Unfortunately, an appreciable fraction of patients (≈20%) cannot be offered safe, effective intervention due to the size, location and/or characteristics of the bAVM (eg, large nidus, deep venous drainage, eloquent location).12 13 Furthermore, treatment of unruptured bAVMs—roughly half of all cases—has become increasingly controversial because the natural history for these patients may be less morbid than invasive therapies themselves.8 14 In the prospective, randomised ARUBA trial (A Randomised trial of Unruptured Brain Arteriovenous malformations), death or symptomatic stroke occurred in 10.1% of patients receiving medical (symptomatic) management alone, compared with 30.7% in patients receiving interventional management.14 15 This seminal work shapes our current management of patients with bAVM, encouraging a shift towards conservative management in patients who might have historically undergone partial or palliative intervention.
A growing body of literature demonstrates that bAVMs are dynamically evolving, actively inflammatory, angiogenic lesions, akin to a slow-growing vascular tumour.16–19 Despite the availability of a number of promising drugs targeting angiogenesis, inflammation and vessel integrity, there is currently no medical therapy approved to treat bAVMs. One such promising medical therapy is the angiogenesis inhibitor bevacizumab (Avastin), a recombinant humanised monoclonal antibody that blocks angiogenesis by inhibiting vascular endothelial growth factor (VEGF) A. Bevacizumab is Food and Drug Administration approved for the treatment of several different cancers, but has also been used off-label to successfully treat hereditary haemorrhagic telangiectasia (HHT), an autosomal dominant disease characterised by vascular malformations including bAVMs.20 21 High expression levels of VEGF have been reported both in resected bAVM tissue and in plasma from patients with HHT.22–24 Several studies have reported significant improvements in HHT-related symptoms with bevacizumab use, including decreases in frequency and severity of epistaxis,25 improvement in chronic anaemia and need for blood transfusion20 and improvement in liver AVM-related heart failure.26 A phase II study showed that six doses of bevacizumab administered intravenously over 12 weeks normalised cardiac output in patients with liver AVM-related heart failure, with a roughly 20% reduction in cardiac output compared with pretreatment values.21 This was probably largely due to a decrease in shunting through the liver AVMs, although other possible explanations were not evaluated.
Bevacizumab has been associated with reversal of vascular dysplasia in animal models of bAVM,27 28 and case reports of bevacizumab use in patients with sporadic bAVM for adverse radiation effects have demonstrated a reduction in perilesional oedema by imaging and marked improvement in symptoms.29 30 However, there have been no clinical trials that aim to determine the effect of the anti-VEGF antibody in these patients. The present study fills an important gap in knowledge by determining the feasibility and safety of bevacizumab treatment in two patients with large inoperable bAVMs.