Discussion
Given the age and comorbidity restrictions in the phase III clinical trials, our registry was established to evaluate safety and clinical outcomes in a community-based population of patients treated with ocrelizumab, with the hope of studying a cohort more consistent with a real-world population of eligible patients with MS. In terms of safety, infusion reaction rates in the POR cohort did not significantly differ from those observed in the prior phase III clinical trials, the first course having the highest rate followed by a stepwise decline with subsequent ocrelizumab infusions. In our cohort, 32.9% of patients had a reaction with course 1 compared with 32.2% in the phase III clinical trials. The most common infections were URIs, also consistent with the findings from the phase III controlled clinical trials. Although patients older than 55 were not at higher risk of having an infection, the number of hospitalisations in older patients in our cohort due to an infection is concerning, the majority of those being secondary to UTIs. The mean EDSS was 5.7 (±1.86), and 69% of these patients were older than 55. Given these latter observations, we recommend that the patient’s age and level of disability should be taken into account when considering the use of ocrelizumab and should prompt very close monitoring when it is employed in older and more disabled patients. Although there were 12 cases of herpes infections detected, there were no cases of systemic or CNS involvement. No cases of progressive multifocal leukoencephalopathy or other significant safety issues have been observed.
In June 2019, the European Medicines Agency updated the ocrelizumab prescribing information to include the association between a reduction in serum immunoglobulin levels, especially IgG, and serious infections. More recently, similar information was added to the prescribing information in the USA.4 However, our data, at this time, do not demonstrate a correlation between serum IgM/IgG levels and risk of infection. The median time on ocrelizumab was a little less than 2 years, so a longer observation period may eventually corroborate an association between immunoglobulin levels and the risk of serious infection.
In terms of efficacy, the data from our cohort revealed that ocrelizumab is effective in controlling relapses with an ARR of 0.09. Although our RMS data are consistent with the ARR of 0.16 reported in OPERA1 and OPERA 2,2 caution is advised when comparing results from controlled studies that were conducted in different patient populations and with different study designs. To date, 43 (12.1%) patients have discontinued ocrelizumab, 15 (4.2%) solely due to a relapse or clinical progression. Of the relapses, 63.6% occurred after 6 or more months on ocrelizumab therapy. There were no predicting factors for a relapse, but patients transitioning from NTZ had the highest occurrence of relapse (27.3%), while comprising only 18.6% of the total ocrelizumab-treated cohort. This occurred despite a mean interval of only 4.4 (±1.4) weeks from their last NTZ dose. This observation was surprising given that previously published data have indicated an increased risk of relapses 8–12 or more weeks after the last dose of NTZ.6 7 Also, the median time to first relapse after transitioning from NTZ was 8.7 months; therefore, OCR should have been fully effective by that time.
To date, there has been no evidence of disability progression in our ocrelizumab-treated patients with RMS, SPMS, or PPMS as median EDSS scores have remained stable up to 30 months since starting ocrelizumab. Follow-up MRIs were also stable in 90.2% of patients.
Registries and open-label extension studies play an important role in acquiring long-term safety, and tolerability data from a broader patient population as compared with the more homogeneous patient cohorts typically studied in controlled clinical trials. Although post-approval AE reporting is an important source of information relating to risk, unlike registries and long-term open label studies, this information is often incomplete, likely under-reporting AEs. Limitations of registries include having multiple clinicians, which potentially introduces variability in the timing, frequency and results of clinical assessments. However inter-rater variability in this study was minimised because of prespecified relapse and disability progression criteria, the level of expertise of the examiners, and MRI consensus between neuroradiologists and neurologists. Another shortcoming is that timing and frequency of MRI are often less than ideal in community-based cohorts, mainly because of delay or refusal of insurance authorisations, or lack of patient financial resources. Although the MRI scans collected in our registry followed a strict protocol, we could not prespecify that patient be scanned on the same machine each time, and not all patients had their MRI scans done at a Providence facility, due to geographical or insurance constraints. Absence of a blinded examiner may also have introduced bias on clinical outcome assessment.
Despite these potential shortcomings, we believe that this study provides valuable information concerning the use of ocrelizumab in a large community-based MS centre, and may assist in future decision-making regarding the selection and management of patients who are potential candidates for ocrelizumab therapy. Although only 355 patients had been enrolled in the POR as of February 2020, the number of patients in this registry has continued to grow, which will allow for our centre to monitor tolerance, and risks of ocrelizumab administration over time and gain a broader perspective of this important therapeutic agent.