Discussion
In this review, we have provided an overview of the most up-to-date data discussing the risk of sICH with reperfusion therapies in patients who had an acute ischaemic stroke with the most commonly encountered cardiac conditions, including patients with AF, HF, LVADs or AC for cardiac indications, which we hope will assist physicians treating patients who had an acute ischaemic stroke with comorbid cardiac disease, especially where guidelines are unspecified. We conclude that, broadly, ET is beneficial without increasing the risk of bleeding in patients who had a stroke with any of the cardiac conditions examined in this review. Intravenous rtPA should also be administered according to the guidelines, with the exception of patients on AC and more granular considerations should be made, especially when ET technology and expertise are not readily available.
When considering specific cardiac conditions, AF is the most common cause of cardioembolic stroke, with increasing incidence with age.30 It has been suggested that despite more aggressive control of risk factors and overall decline in stroke incidence, the proportion of cardioembolic strokes is increasing.31 As demonstrated, patients who present with acute ischaemic stroke and have AF represent a unique group when considering reperfusion therapies, as many may be taking AC, a contraindication to intravenous rtPA.5 Patients who had an AF-related cardioembolic stroke are at high risk for both stroke recurrence and sICH. The risk of sICH among those with AF is elevated among those with a high CHA2DS2-VASc score, a high NIHSS, and larger infarct size.10 Our results suggest that while AF is an independent risk factor for worsened outcomes after stroke regardless of intravenous rtPA use, they do not suggest that intravenous rtPA should be contraindicated in patients with AF. Although the risks and benefits of acute stroke ET has not been studied only in participants with AF, the retrospective data and subgroup analyses of clinical trials, as well as real-world clinical experience would suggest that patients with AF do at least as favourably as other patients without AF.
HF represents a significant public health problem, with about 915 000 incident HF cases yearly in the USA alone.32 When considering how a patient with HF may respond differently to acute stroke reperfusion therapy, a number of potential complexities emerge. It has been suggested that the efficacy of intravenous rtPA may be reduced in patients with a reduced ejection fraction, as their low cardiac outputs might decrease perfusion to the brain.33 Additionally, management of patients with HF under anaesthesia is known to be more difficult, and anaesthesia is often required for ET.34 Patients with HF can also have coagulation abnormalities that increase their bleeding risk, irrespective of ischaemic stroke.35 Finally, HF with reduced ejection fraction is associated with the stasis of flow and an increased risk of AF, which can further complicate the decision-making in acute stroke if AC is being taken by the patient for stroke primary prevention at the time of the event. In our review of the available evidence, which is although limited, there is no evidence to delay in administering acute stroke reperfusion therapies in patients with HF. HF itself can portend a poorer prognosis but intravenous rtPA and ET appear to be equally as safe and effective in patients who had a stroke without HF.
Due to the abnormal blood flow in the hearts of these patients leading to increased susceptibility to thrombosis, ischaemic stroke is a non-infrequent complication of LVAD, with a 1-year post-VAD-implant stroke incidence ranging from 13% to 20%.36 The 2019 INTERMACS report, a US-based VAD registry of>25 000 patients, cites stroke as the most common cause of death after VAD implantation.36 However, even though the risk of stroke in LVAD patients is substantial, the number of prevalent LVAD patients is small so management is largely based on expert opinion. Although no guidelines currently recommend ET as a management strategy for this population, ET appears to be safe and efficacious and, importantly, the only viable option for individuals with VAD.20 Interpretation of perfusion imaging in the expanded time window may need to be considered in light of LVAD placement, but data on this are lacking.
AC is a current contraindication to intravenous rtPA administration. Yet, in light of recent medical advances that have led to the expanded use of novel AC medications, the decision regarding administration of intravenous rtPA has become more complicated. For example, the specific AC reversal strategies when sICH develops and novel testing assays to rapidly identify a patient’s AC status have become new considerations in the decision-making algorithm. With such scenarios, these considerations become relevant: the type of AC (VKA vs DOAC) a patient is taking, blood tests evaluating the patient’s therapeutic level of AC (INR and aPTT tests), and viability of reversing a state of AC, which is not done at the authors’ institution nor is endorsed, but is discussed in some of the publications included in this review. A full discussion of the decision to use antiplatelet therapy in addition to AC in the patient with cardiac disease is outside of the scope of this article, but can further complicated decision-making. In general, there is no evidence to continue antiplatelet therapy for stroke prevention once AC is initiated unless the patient has had a recent percutaneous coronary intervention or have AF with a mechanical heart valve.37 38 Future studies with the aim of specifying optimal care of patients with these cardiac conditions among these considerations will be of great importance.
In summary, this review supports that patients with the specified cardiac conditions benefit from both acute stroke reperfusion therapies, with relatively low rates of sICH. We acknowledge that many of these studies were performed using older ET devices and did not include the expanded time window for patients presenting up to 24 hours after stroke onset, suggesting that the benefit from stroke reperfusion therapy in patients with cardiac disease may be even higher than currently realised. We also recognise that there are limitations in comparing patient populations from across different stroke trials, performed at different time periods, with different extents of inclusion or exclusion of cardiac patients and slightly differing definitions of sICH and diagnoses of cardiac disease; nonetheless, we anticipate a time when increased data will allow for a formal accounting of differences in variance and bias between studies.