Discussion
In this study, we describe a clinically significant difference between two different NCS techniques in patients with painful neuropathy.
NCS techniques
In our laboratory, we established both methods using state-of-the-art description of normal ranges from a substantial number of healthy individuals spanning the different age groups. We consider both methods valid with reduction in SNAP amplitudes reflecting the degree of nerve fibre loss.
The laboratory validated the near-nerve technique against the total number of sural nerve fibres from micrographs using biopsies from patients with different degrees of neuropathy6 and found the electrically evoked responses equally sensitive compared with distal tactile stimuli.5 We generally find this technique superior to the surface technique at both ends of the normal range and equivalent in between, supported by data on sensitivity of the two techniques14 15 in patients with large fibre neuropathy.
In experienced hands, the two procedures have similar discomfort to the patient. Using the near-nerve technique, the placement of the two active electrodes takes a few minutes and the subsequent recording of the SNAP using supramaximal stimulation does not include painful pressure on the skin from surface stimulators and does not include percutaneous current with activation of pain fibres. Beyond being able to record from even a few remaining nerve fibres in severe neuropathy, the procedure enables a reliable determination of SNAP amplitudes in patients with crural oedema or obesity, thereby reducing the risk of falsely abnormal results.
Painful neuropathy
Prompting this study was unprecedented discrepancies found examining patients with probable painful neuropathy while validating the transferal of normative data.
In our study, changing from surface to subdermal electrodes increased the prevalence of large fibre dysfunction from 28.3% to 54.7%. This study defines this as a systematic bias across all signal sizes rather than merely a sign of sensitivity enabling recording of the smallest signals.
We hypothesise this bias as being caused by uncontrolled changes in the current pathway across the skin only affecting the surface recording.
Trophic skin changes due to neuropathy could induce this bias by reducing the distance from the nerve to the recording electrode or by a reduction in skin resistance due to dermal atrophy. Indeed, Bittel et al reported reduced volumes of subcutaneous adipose tissue in patient with diabetic neuropathy compared with controls with type 2 diabetes without neuropathy.21 Although literature builds up concerning the decreased electrochemical conductance to alternating or direct current in peripheral neuropathy,22 little is known about the impact on currents from the more complex SNAP at the recording site or from the impact of skin capacitance on the stimulus current.
Another bias could arise from the difference in conduction path. The ortodromic technique excites the nerve at a more distal site, which might not enable impulse generation in the impaired axons. This should have the opposite resulting bias, though.
Neuropathy classification
The clinical importance of this finding primarily rests in the diagnostic path for the patient with possible painful neuropathy. If NCS documents a large fibre abnormality, only thermal QST will be needed to document a mixed neuropathy with small fibre involvement in concordance with both the research classification of distal symmetrical neuropathy2 and NEUPsig criteria.9 With a bias towards normal findings using surface electrodes, more patients will need additional studies to establish a definite SNF diagnosis using Consensus Criteria.10–13 The clinical importance of this could differ across geography. If a neurology service performs NCS but not small fibre diagnosis with skin biopsy, a more sensitive NCS would give the diagnosis definite painful neuropathy by adding only QST for temperature. If the service had a full diagnostic workup, there would still be a reduction in cost to perform the IENFD processing in fewer patients. Presently, you do not need to meet the consensus criteria of SFN to make a definite diagnosis of a patient with painful neuropathy.
We found SNAP amplitudes to be correlated to the thresholds of both small and large fibres, although thin diameter fibres are not supposed to affect the recording,8 suggesting a common underlying pathology. Likewise, in the ROC analysis, we found the optimal discriminative SNAP amplitude to be the comparable when analysing both small fibre (CDT, WDT) and large fibre (VPT) sensory thresholds in this group of early neuropathy. This finding supports the view that neuropathy affects both small and large fibres in parallel without preferential small fibre involvement early on and questions SFN as a separate clinical entity. If a substantial number of our patients had early pure small fibre loss, we would find little difference of vibration abnormality, but we found abnormal vibration z-scores in 41.5% and abnormalities in 22 of the 41 patients (53.7%), who had abnormal sensory function on QST. The discriminative value of SNAP amplitude to predict an abnormal vibration z-score would also be lower than for temperature z-scores. We found no difference in the predictive value between WDT and VPT with surface technique but found a higher value for CDT suggesting that cold fibre functions were affected earlier than both heat and vibration sensitive fibres. Using near-nerve electrodes, SNAP amplitudes were even predicting vibration sense abnormalities at a higher value, suggesting earlier involvement. To be confident in that interpretation, we would like a confirmative study in a larger cohort with more clinical information on neuropathy symptom duration.
Reference values
Any clinical entity is defined by anatomical or clinical diagnostic measures. Additional diagnostic measures as the NCS need to be validated in comparison to that case definition. Transferal into another patient group will demand a repeat validation.
In the case of distal symmetric sensorimotor neuropathy, the case definition is purely clinical and the NCS techniques used were validated against the clinical presentation and the pseudoclinical measures of vibration thresholds. In the case of near-nerve recording additionally validation was made using anatomical case definitions.
When diagnosing painful neuropathy, another clinical entity, the case definition is still clinical. To validate NCS in this context, it is imperative not to rely entirely on small fibre measures and we did this by including vibration thresholds. The relative high number of patients with discordant classification using NCS and vibration thresholds, suggests that either test could not stand alone in revealing large fibre involvement in patients with painful neuropathy.
A coherence between the SNAP amplitude data using different NCS techniques, would allow us to trust the transferability of the normative values of both techniques into this patient group, but with a significant bias in SNAP amplitudes, they failed this test.
We are at present not able to conclude, that either test is preferable in diagnosing large fibre involvement, since the bias could be a result of both statistical bias inherent to but different between the two methods and a biological bias differentially affecting the methods (ie, trophic skin changes or fat tissue redistribution).
Our study of sensory NCS in patients with possible painful neuropathy has several strengths. We used a predefined diagnostic protocol on a large cohort of patient fulfilling the clinical definition of possible painful neuropathy.
A further strength is the systematic use of QST in this patient group. We detected large fibre involvement through vibration thresholds as well as small fibre involvement using temperature thresholds. Using those measures, we were able show, that in our cohort both NCS techniques were actually reflecting a clinical mixed neuropathy.
The primary weakness of the study was the lack of control groups including normal subject and patients with clinical large fibre neuropathy without pain symptoms. A future study including those groups could determine, if the bias found was due to a statistical bias or a biological bias in the patients with probable painful neuropathy. Collecting a reference group for clinical practice using both techniques would also help laboratories to select either method more confidently, based on the clinical need of the individual patient.
On the same issue, additional small-fibre tests as IENFD, would improve the ability to determine the impact on how this finding affects the SFN diagnosis in painful neuropathy. As the paper focuses on large fibre function this weakness does not affect the conclusion, though.