Discussion
We provide evidence for clinically significant autonomic dysfunction after msTBI in two separate outpatient cohorts, with sex and age constitution typical of TBI. The prospective cohort showed multidomain autonomic symptom burden, which correlated with fatigue, pain and negative perception of health status and outlook. Furthermore, there was objective autonomic dysfunction, both sympathetic and parasympathetic, in a retrospectively identified TBI cohort.
While the presence and impact of cognitive and psychiatric symptoms is increasingly recognised in patients with chronic msTBI, there is less recognition of the systemic effects of TBI. Although somatic symptoms are widely reported,17 little is known about their causes or consequences. Studies assessing HR variability in small groups of patients with TBI suggests that cardiovascular autonomic dysfunction persists in chronic TBI, and may contribute to clinically relevant symptoms.3 11 18 Our retrospective cohort presented with mild autonomic cardiovascular dysfunction within the spectrum of intermittent autonomic dysfunction, and specifically, either new onset vasovagal syncope or postural tachycardia syndrome. Our prospective cohort reported a high burden of symptoms that could be explained by autonomic dysfunction, which also correlated with other symptom and health measures. Our study extends the current literature by demonstrating that objective and clinically relevant autonomic dysfunction is observed after msTBI. Furthermore, we show that this exists in fully ambulant patients with msTBI many months or years after their initial injury, and whom many might assume to be ‘fully recovered’.
Our findings have important clinical implications. Having a high burden of autonomic symptoms impacts on other symptoms and subjective view of health. We also demonstrate that formal autonomic testing, repeated if necessary, can help provide diagnostic clarity in this cohort, especially if there are persistent unexplained symptoms. This enables both appropriate management of the patient’s symptoms and the avoidance of further diagnostic burden. Intermittent autonomic dysfunction, such as vasovagal syncope, is treatable. Timely identification and management are likely to improve long-term quality of life in these patients. Our results suggest that a COMPASS-31 of >30 might be most discriminatory between TBI and non-TB, but further work is required to understand how best to identify patients in whom autonomic function testing would have the highest yield.
It is interesting to note that the retrospective cohort were largely referred for orthostatic symptoms, whereas the symptoms reported by patients in the prospective cohort included a high burden of other types of symptoms, notably gastrointestinal (ie, bloating and nausea after meals, constipation and diarrhoea) symptoms. This may be because postural symptoms are more readily recognised by non-specialists as being potentially mediated by autonomic dysfunction. It is possible that symptoms captured by the COMPASS31 questionnaire due to other, non-autonomic or non-TBI causes, given that some symptoms were also reported by non-TBI controls. However, orthostatic, gastrointestinal and secretomotor scores are significantly higher in TBI than controls, suggesting that this cannot be wholly the case. Indeed, it is just as possible that some post-TBI symptoms are considered non-specific or even misattributed. For example, the high burden of gastrointestinal symptoms may reflect damage to central autonomic pathways, such as the motor nuclei of the vagus nerve, due to brainstem white matter traumatic damage, a mechanism that may be underappreciated by non-autonomic specialists. Indeed, the majority of patients referred for autonomic testing reported experiencing symptoms ‘ever since their injury’, but were not referred until years later. Therefore, it is highly likely that post-TBI autonomic symptoms are under-recognised, and opportunities for further investigation and management are missed.
Autonomic dysfunction after TBI may occur through various mechanisms. The hallmark of msTBI, white matter injury, is caused by axonal shearing due to injury forces and continues due to inflammation and delayed axonal degeneration in the chronic period, and results in network disruption.19 20 Autonomic dysfunction may occur due to injury to regions of the central autonomic network (CAN1) or their connecting white matter tracts. Brainstem nuclei and white matter connections to and from thalamic and basal ganglia regions may be particularly vulnerable to damage, and underlies catecholaminergic dysfunction contributing to cognitive dysfunction post-TBI.21 22 Given the importance of brainstem, thalamic and basal ganglia circuits to autonomic function, injury to these white matter tracts may cause centrally mediated autonomic dysfunction after TBI. TBI may also lead to autonomic dysfunction through indirect mechanisms, for example, interacting with an underlying vulnerability, such as tendency towards hypermobility, or by increasing the risk of conditions independently associated with autonomic dysfunction, such as neurodegenerative disease23 and alcohol abuse.24 25
The consequences of autonomic dysfunction for patients with TBI are potentially profound and far-reaching. Our study found a significant burden of autonomic symptoms, which correlated with other clinical symptoms as well as a negative view of their current health status and pessimistic view of future health. Worse quality of life and psychological distress is reported in otherwise healthy patients with vasovagal syncope or POTS and neurological patients with concurrent autonomic dysfunction.26–28 Additionally, CAN regions are also important for cognition and emotional processing,29 30 which means that autonomic dysfunction may be an important biomarker for or contributor to post-TBI cognitive/psychological dysfunction. Furthermore, interoception, the ‘signalling and perception of internal bodily sensations’ is important for both cognitive and emotional function.31 32 Post-TBI autonomic dysfunction may lead to abnormal bodily responses to cognitive or emotional stimuli,3 which could contribute to post-TBI cognitive/psychological morbidity.
Limitations
The autonomic function testing cohort was retrospectively recruited. This means that we only captured patients whose physicians had already considered autonomic dysfunction to be a possible cause of their symptoms, which were usually orthostatic symptoms. The prevalence of abnormal testing may be lower in an unselected population, however the prospective cohort suggests that there is likely to be a significant proportion. Future large-scale prospective studies could address this.
Patients filled out the COMPASS-31 irrespective of whether they initially reported symptoms, so there is a possible risk of over-reporting by patients when presented with a list of symptoms rather than free recall. However, given that patients’ scores were significantly higher than non-TBI controls, this is unlikely to be a significant factor in our results.
For largely practical reasons, we only included msTBI in our cohorts, so our findings may not be generalisable to mild/repetitive TBI. Autonomic dysfunction has been reported in mild TBI33 so future studies should seek to include a mild TBI cohort if possible.