Discussion
In this national survey, 70 cases of GBS following SARS-CoV-2 vaccination were reported by UK clinicians between January and June 2021. Sixty-seven followed the adenovirus-vectored ChAdOx1 vaccine (Oxford-AstraZeneca), of which most (56) were classified as probably linked to the vaccine by the modified WHO Causality Assessment; in contrast, just three GBS cases followed the mRNA BNT162b2 vaccine (Pfizer), none of which was classified as probably linked. The modified WHO Causality Assessment examines the timeframe between the vaccine and the adverse event, investigates for other causes, looks for known risk factors and considers previous literature of a causal link.20 If all these are met, the link between the vaccine and the adverse event is classified as confirmed. Because at the time of our study there was only very limited literature on GBS after SARS-CoV-2 vaccination, and no epidemiological studies, no cases could be considered as confirmed.20 Since then, a large epidemiological study has shown an increased risk ratio of 2.9 in the 15–21 days after vaccination with the ChAdOx1 vaccine.8
The rapid development and introduction of SARS-CoV-2 vaccines has prevented millions of infections and thousands of deaths around the world.38 39 ChAdOx1 is the most widely used SARS-CoV-2 vaccine, currently in 181 countries,40 with more than three billion doses ordered worldwide.41 Critical to vaccine introduction is postmarketing surveillance, which identifies adverse events that are too rare to be detected in clinical trials. This can include discovery of completely new syndromes, such as vaccine-induced thrombosis and thrombocytopaenia,42 and those such as GBS that might be anticipated based on knowledge of other vaccines.9
Nearly 90% of the 70 GBS cases in our study met the modified Brighton criteria levels 1 or 2 for diagnosing GBS, meaning there was a consistent clinical picture and supporting evidence from cerebrospinal fluid evaluation, nerve conduction studies or both. However, because many authorities now recognise that the Brighton criteria, published in 2011, do not include all the variant forms of GBS,4 22 23 we also included cases with other recognised variants. The IGOS study with which we compared also included such cases. IGOS did not apply the Brighton criteria because they miss important cases; in contrast, we modified the criteria to allow for such cases. We chose to compare with IGOS because it is the largest prospective study of GBS to date. The clinical pattern for patients with GBS after SARS-CoV-2 vaccination differed from that of the IGOS patients. Eleven per cent of our patients had the bilateral facial diplegia and paraesthesias variant of GBS; in most series, it is less than 5%.22 This finding carries important implications for surveillance studies: these patients, less likely to be admitted and treated with intravenous immunoglobulin, will be missed by surveillance based on hospital admission and immunoglobulin databases. Additionally, without careful evaluation, they may also mistakenly be diagnosed as having isolated facial palsy. Altogether, atypical variants accounted for nearly one-quarter of our cases and would have been missed had we relied solely on the original Brighton classification. Instead, we proposed an expansion of the Brighton criteria to incorporate such patients with facial diplegia and paraesthesias in the future.
Although the clinical presentations in our study differed from the IGOS cohort, the disease severity was similar, which is reassuring. At 3 months, the mortality was 3% in our cohort and 58% were able to mobilise independently. This is consistent with the IGOS study, where mortality at 12 months was 5%, and at 3 months just over 60% of patients were able to walk unaided.27 Just 10% of patients in our study recalled an antecedent infection in the preceding weeks, compared with nearly 80% in the IGOS cohort. Although this is consistent with GBS being caused by the vaccine, there are other explanations, including recall bias, or people with a current infection not getting vaccinated; however, it is unlikely these would account for the large difference we observed.
Studies of GBS following SARS-CoV-2 infection hypothesise that the viral spike protein, the key component of the ChAdOx1 vaccine, leads to formation of antiganglioside antibodies.43 However, in our cohort, only one patient tested positive for antiganglioside antibodies, indicating that the mechanism in vaccine-associated GBS may be different or that an antibody not routinely tested by the reporting centres may be involved. Whether the spike protein is the culprit in postvaccination GBS is also uncertain. This is because some individuals in our study suffered from SARS-CoV-2 infection with no neurological complications, yet they went on to develop GBS following SARS-CoV-2 vaccination. Similarly, few GBS cases were seen following BTN162b or mRNA-1273 vaccines that also encode the spike protein. However, both Ad26.COV2-S and ChAdOx1 vaccines use adenovirus vectors (human and chimpanzee, respectively). Yet, there is no strong evidence for adenoviruses causing GBS, and in one study, adenovirus has only been found in one of 156 GBS cases.44
We observed that the age distribution of GBS cases after ChAdOx1 vaccination was different to the baseline GBS age distribution before the pandemic, with a higher proportion of the postvaccination cases among adults aged 50–59 years and lower proportion among younger and older adults. There are several possible explanations, including the fact that the most elderly UK adults (aged >80) were prioritised for vaccination with BNT162b2, which was available first before ChAdOx1 became available and that the use of ChAdOx1 vaccine was restricted in the UK to the individuals older than 40 years of age.2 45 Alternatively, there may be ascertainment bias if GBS is less likely to be reported in the elderly, especially because of healthcare access issues during the pandemic.46 47 However, it is also possible that middle-aged adults may be at higher risk of GBS after ChAdOx1 vaccination than older adults. We could not undertake an observed versus expected analysis to quantify any increased risk of GBS after vaccination because the information on different vaccine usage among different age groups is not available publicly in the UK. This is important because the incidence rates vary among population as shown in figure 3, and different age groups were prioritised for different vaccine brands. However, epidemiological studies, especially self-controlled case series that are best placed to adjust for such confounders, are now addressing this. A recently published self-controlled UK case series found an increased risk of GBS from 2 weeks after a first dose of the ChAdOx1 vaccine, with an incidence rate ratio of 2.90 (95% CI 21.5 to 3.92) at 15–21 days8; this gave an estimated 38 excess GBS cases per 10 million vaccinees, compared with 145 excess cases per 10 million people infected with SARS-CoV-2. Interestingly, an increased risk of Bell’s palsy was also observed at 15–21 after the first dose of the ChAdOx1 vaccine (incidence ratio 1.29 (95% CI 1.08 to 1.56); it is possible that some of these patients actually had the facial diplegia with paraesthesias variant of GBS, but this had not been diagnosed as such. Our team is currently working on an independent epidemiological study to verify these findings. Consistent with our observations, other surveillance studies in the USA and in Mexico did not find increased rates of GBS after the BNT162b2 or mRNA-1273 vaccines.48 49 In an Israeli cohort of 579 patients with a history of GBS who received the BNT162b2 vaccine, just one had a relapse.50 In parallel with our study, an analysis of the intravenous immunoglobulin prescriptions in the UK identified an increase in GBS in March–April 2021, which was accounted for by the cases occurring within 6 weeks of the first dose of ChAdOx1 vaccination. Interestingly, this study did not identify phenotypical differences, although comparison was with a smaller cohort of patients who developed GBS outside of the 6 weeks temporal association with the vaccine.51
Our study had several limitations. Because it was a survey set up rapidly in the context of an emergency vaccination programme, we could not ensure that all patients had the same microbiological, electrophysiological and antiganglioside investigations. However, most clinicians in the UK follow the same approach to diagnosis and management.4 As any spontaneous surveillance system, the study is subject to a case ascertainment and reporting bias, as well as under-reporting. In adverse drug reactions surveillance, under-reporting may be as high as 94%52; however, serious adverse events, such as GBS, are also more likely to be reported, as may be events following SARS-CoV-2 vaccines. Fewer patients had antiganglioside antibodies than expected, possibly because antibody testing was done through routine diagnostics services rather than in a specialised laboratory. The comparison of the age-distribution of postvaccination cases to baseline GBS cases in Health Episode Statistics should be interpreted with caution, as it is limited by the different ascertainment of cases and is unadjusted for confounding, for example, by different vaccine use in different age groups.
In summary, our national study of GBS cases across the UK reported many more cases following the ChAdOx1 vaccine than the BNT162b2 vaccine; few of these patients had alternative aetiologies. Facial weakness was common with an unusually large number of patients having the facial diplegia with paraesthesias. The observed age distribution of patients with GBS after the ChAdOx1 vaccine differed from that of background GBS data before the pandemic. Mechanistic studies will be needed to examine whether in GBS after vaccination there is antibody cross-reactivity between nerve components and the adenovirus vector and/or the SARS-CoV-2 spike protein. With just 65 cases reported in our study, after 25 million first doses of ChAdOx1 vaccine, the increased risk of GBS following vaccination is likely to be very small, and the benefits of vaccination far outweigh the risks. Nevertheless, with billions of people worldwide yet to be vaccinated,40 the WHO Global Advisory Committee on Vaccine Safety, and medicinal product regulatory bodies will need to modify their guidance accordingly, while clinicians remain vigilant to the possibility of this rare adverse event, including its atypical variants.