Discussion
This study provides class II evidence for the efficacy and safety of targeted BTX-A injection in the treatment of SB, as measured objectively by sEMG. Comparison of different BTX-A doses and intramuscular injection paradigms demonstrates that bilateral masseter only (30U), masseter (30U)/temporalis (15U) and masseter (30U)/temporalis (15U)/medial pterygoid(15U) treatment regimens are comparable in terms of safety, and while our study was not powered to fully uncover between-group differences, there was a greater magnitude of effect among participants randomised to the injection paradigm with higher total dose and number muscles injected (ie, group C). The treatment was safe, with bruising over the masseter in one participant and only 5 out of the 35 participants experiencing mild short-lived focal weakness following injection with BTX-A.
While there was a reduction in BI following BTX-A injection at week 4, this did not persist at week 12, regardless of the dose of BTX-A or muscles injected. This wearing off of BTX-A effect is consistent with the biological effects of BTX-A, with gradual recovery of motor function usually 3–4 months after injection.27
In our cohort, the duration of effect of BTX-A was not significantly different despite an overall doubling of the dose and expansion of muscles injected between group A (60U total) and C (120U total). Between-group differences may have been uncovered with a larger sample size and longer follow-up period after repeated injections. The magnitude and duration of muscle weakness induced following BTX-A increases with repeated injection,28 and thus the degree and duration of effect of BTX-A on SB may increase with subsequent injections even with stable dosing. It is possible, however, that the beneficial effect of BTX-A on SB is not dose-dependent. By inducing a degree of masticatory muscle weakness, subsequent behavioural changes on affected individuals, exhibited by reduced clenching and grinding, may be independent of the degree of muscle weakness. Indeed, in measuring BI we are not measuring the strength of masticatory muscles, but rather the frequency and pattern of masticatory muscle activation.
We explored baseline participant characteristics associated with an objective response to BTX-A injections. The greater the baseline BI, the greater the objective change in BI following BTX-A injection at week 4, regardless of the dose injected (figure 3). This is an important and novel finding, and supports the use of objective measurements of bruxism severity in predicting benefit from BTX-A injection. Further still, participants with a higher baseline BI did not otherwise differ from the remainder of the group clinically or in baseline subjective measurements. In the absence of overnight EMG and BI determination, these more severely affected individuals would remain undifferentiated in clinical practice.
In considering how these findings compare with the effects of alternative treatments for SB, the most widely used and studied treatment for SB is oral splint devices. Objective benefit of splints on SB as measured by sEMG is limited to the immediate short-term (ie, the first nights of continuous use) but do not persist at weeks 2 onwards.13 29 It is widely understood that these devices will reduce dental destruction due to bruxism but not change the overall bruxing activity for sustained periods, and therefore, not reduce pain or headache associated with bruxism. Our study population reflects this; the majority (82.8%) of participants included in our analysis had previously or currently used dental splints.
We demonstrated a discrepancy between bruxism severity (measured by BI) and bruxism frequency (measured by questionnaires), with no subjective improvement reported at 4 and 12 weeks after injection. This is consistent with a prior study that demonstrated no significant change in the quantifiable portion of the Montreal Bruxism Questionnaire following BTX-A injection when compared with placebo, despite benefit measured by polysomnographic measures of bruxism and other subjective scales (a Clinical Global Impression and VAS of pain and bruxism overall).16 An explanation can be found in the nature of the bruxism symptom questionnaire, which asks the participant to indicate how often in the last month they think they bruxed at night, how often their sleeping partner thinks they bruxed at night and how often they woke with jaw stiffness, graded from zero (never) to five (every day). Specifically, although this clearly captures frequency of symptoms, the severity or morbidity of these symptoms is not reflected. Clinical evaluation and any future research evaluating BTX-A in the treatment of SB should therefore consider this observation when selecting appropriate outcome measures.
Similarly, we did not observe evidence for change in pain outcomes as measured by the SFM pain questionnaire (including sensory and affective subscores) or the VAS for pain. This was an unexpected finding and at odds with participants’ overall experience at the end of the study, with 24 (77%) requesting ongoing injection due to a perceived improvement in pain. Overall, changes to pain levels following BTX-A in SB have been conflictingly reported using SFM and VAS in other studies. For example, two studies using the VAS demonstrated change in jaw pain at week 4,16 30 while a separate study failed to find changes at this time point, instead finding a change at 6 months postinjection.17 Day-time sleepiness and headache-related disability following injection, as measured by the ESS and HIT score respectively, were not influenced by BTX-A injection at any dose evaluated in our study, replicating the observations of a prior placebo-controlled study.16 Taken overall, our findings suggest that current subjective outcome measures are less sensitive than objective measures for the purpose of evaluating treatment effect in SB. It is also possible that a longer period of bruxism treatment with BTX-A (for example with repeated injection) is required for bruxism-associated myofascial pain to improve with treatment; for example when Botox injections are used for prevention of chronic migraine, peak effect occurs after at least a second set of injections31 32 The best subjective outcome measures of SB and those most sensitive to change following intervention have not been established and need ongoing consideration in publications in the field.
The majority of participants had coexistent headache disorder, with 82% suffering either tension-type headache or migraine, and 32% having multiple types of headache. This exceeds the background estimated prevalence of these disorders.33 There are several potential contributors for this: there is an increased incidence of tension-type headache and migraine among those with SB.34 Referral bias is also possible, with those with concurrent headaches having greater disability and be more likely referred to a neurology centre for treatment. Importantly, however, the relatively high prevalence of headache disorders in our cohort may have reduced the sensitivity of our subjective outcome measures in detecting changes to bruxism frequency or severity, and thus contribute to the disparity between our objective and subjective measures of bruxism or bruxism related pain after active treatment.
Our study has several limitations. The small sample size may limit generalisability of these results, particularly in comparing individual treatment groups. On the other hand, this trial was sufficiently powered to unequivocally demonstrate efficacy of BTX-A for the treatment of bruxism. Concurrent EEG channel recordings would have confirmed that the recorded sEMG activity was truly occurring during sleep, however, the practicalities of such a system were beyond the scope of participants’ use at home. We feel that this has not significantly impacted study findings, as wakeful EMG activity can be distinguished from involuntary activity in sleep, and would be expected to occur equally at all time points in all participants. Due to randomisation and a cross-over design, we expect this potential noise to affect both intervention and placebo, and therefore, does not represent a bias. Finally, the techniques used in this study are accessible for more widespread use (as opposed to EEG monitoring), making these findings more applicable for clinical practice.
In conclusion, targeted BTX-A injection is safe and effective in the treatment for bruxism, as measured objectively by the BI. Those with more severe bruxism may derive a greater benefit from BTX-A injection and the use of overnight EMG recordings may assist in predicting a response following BTX-A. While a greater benefit may be achieved by administering BTX-A into a greater number of muscles (and therefore, at higher total doses), larger studies which include objective evaluation following repeated BTX-A injections are required to establish the optimal dosing of BTX-A in the treatment of SB.