HALLUCINOGENIC PERSISTING PERCEPTION DISORDER: A CASE SERIES AND REVIEW OF THE LITERATURE

1Hannah HF Ford, 2Clare CF Fraser, 3Emma ES Solly, 1,3Jeanne F Fielding, 3Owen OW White, 4,5Anreke AVW van der Walt, 1Department of Neurosciences, The Alfred Hospital, Melbourne, VIC, Australia; 2Neuro-Ophthalmology, Sydney University, Sydney, NSW, Australia; 3Neurology Department, Westmead Hospital, Westmead, NSW, Australia; 4Rick Swanson, 5Ocular Motor Research Laboratory, Monash University, Clayton, VIC, Australia; 6Neuro-ophthalmology Service, The Alfred Hospital, Melbourne, VIC, Australia; 7Multiple Sclerosis and Neuroimmunology (MSN), The Alfred Hospital, Melbourne, VIC, Australia; 8Multiple Sclerosis and Neuro-ophthalmology Group, Monash University, Clayton, VIC, Australia

10.1136/bmjno-2021-ANZAN.79

Objectives To report the clinical characteristics and investigation findings of a series of Hallucinogenic Persisting Perception Disorder (HPPD) cases and review previous HPPD case reports from the literature.

Methods Case studies were collected from consultant neuro-ophtalmologists between 2019 and 2020. PubMed and MEDLINE databases were searched for case reports between 2000 and 2020 using the terms ‘hallucinogenic persisting perception disorder’ and ‘case report’

Results Thirteen case studies were reviewed. Lysergic acid diethylamide (LSD), 3,4-Methyl enedioxy methamphetamine (MDMA) and cannabinoids were the most common drugs used prior to HPPD onset. Twenty-two different visual symptoms were described. The most commonly reported were visual snow, floaters, palinopsia, photophobia and photopsia. Ophthalmic and neurologic investigations were normal. Two patients fully recovered after benzodiazepine treatment or no treatment. Twenty-four literature case reports were identified. LSD, MDMA and cannabinoids were the most frequent drugs used. Seventeen different visual symptoms were described. Ophthalmic and neurologic investigations showed no clinically significant findings in the majority of cases. 25% of cases fully recovered after treatment with benzodiazepines, eye movement desensitisation and reprocessing therapy, anti-epileptic drugs or no treatment.

Conclusions A wide variety of hallucinogenic and non-hallucinogenic recreational substances are implicated in HPPD. Clinical presentation includes a diverse range of positive visual phenomena and overlaps with Visual Snow Syndrome (VSS). Neurologic and ophthalmic investigations are typically normal. Management is complicated due to a lack of high-quality evidence. Controlled trials are needed to better understand the pathophysiology and optimize treatment for HPPD.

THE DIAGNOSTIC JOURNEY OF MITochondrial DISEASE PATIENTS

1Laura I Rudaks, 3Eloise Watson, 1Michal Lubomski, 1Fabienne Edema-Hildebrand, 1Kate Ahmad, 1Christina Liang, 1Ryan Davis, 1,2Carolyn Sue, 1,2Laura I Rudaks, 1Eloise Watson, 1Michal Lubomski, 1Fabienne Edema-Hildebrand, 1Kate Ahmad, 1Christina Liang, 1Ryan Davis, 1,2Carolyn Sue, 1Royal North Shore Hospital, St Leonards, NSW, Australia; 2Neurology Department, Westmead Hospital, Westmead, NSW, Australia; 3Kolling Institute, St Leonards, NSW, Australia

10.1136/bmjno-2021-ANZAN.80

Introduction Mitochondrial disorders can often be challenging to diagnose and patients may undergo protracted investigative odysseys before reaching a diagnosis. 1 This study reviewed the diagnostic journey for genetically confirmed Mitochondrial Disease patients.

Methods Patients with a genetic diagnosis of mitochondrial disease seen at the Department of Neurogenetics, Royal North Shore Hospital, were invited to complete an online survey at their appointment or via telephone. Participant clinical records were reviewed for additional data, including genetic diagnosis.

Results Between October 2018 and April 2020, survey results were obtained from 68 patients. The most common presenting symptoms were fatigue (39%), weakness (31%), and droopy eyelids (31%). The most frequently completed investigations were MRI (55%), neurophysiologic testing (45%) and EEG (44%). 33% of participants had consulted five or more doctors with an overall mean time to diagnosis of 6.2 years. 41% of patients received a diagnosis within two years of symptom onset, 31% between 5 and 15 years, and 11% after 15 years or more. 38% of participants received at least one alternative diagnosis prior to their definitive genetic mitochondrial disease diagnosis. Following diagnosis, 34% of patients joined a support group and 87% felt that this was beneficial.

Conclusions Our results demonstrate that many patients experience long delays, undergo many investigations and see multiple doctors before a diagnosis of mitochondrial disease is reached. It is hoped that advances in diagnostic pathways and access to earlier genetic testing may streamline the process.

REFERENCES


IgLON5 AUTOIMMUNITY IN TWO CASES WITH PERIPHERAL NERVOUS SYSTEM FEATURES

1,2Laura I Rudaks, 3,4Victor SC Fung, 5,6Jean-Pierre Halpem, 5Omar Ahmad. 1Concord Repatriation General Hospital, Concord, NSW, Australia; 2Royal North Shore Hospital, St Leonards, NSW, Australia; 3Royal North Shore Hospital, St Leonards, NSW, Australia; 4Neurology Department, Westmead Hospital, Westmead, NSW, Australia; 5Sydney Medical School, University of Sydney, Sydney, NSW, Australia; 6Neurology Department, Sydney Adventist Hospital, Wahroonga, NSW, Australia

10.1136/bmjno-2021-ANZAN.81

Introduction IgLON5 autoimmunity has four main clinical patterns; a sleep disorder, bulbar syndrome, PSP-like pattern and predominant cognitive impairment. Other manifestations include movement disorders, gait instability, dysautonomia and neuropsychiatric features [1-3]. Peripheral nervous system involvement has been occasionally reported [3,4]. We describe two cases of IgLON5 autoimmunity presenting with peripheral neuropathy.

Cases A 72-year-old lady presented with progressive distal lower limb numbness, paraesthesia, incoordination and gait disturbance. Associated features included fluctuating facial numbness, limb and trunk fasciculations, upper limb tremor, anxiety, episodic hyperventilation, nocturnal myoclonus and vocalisations in sleep. Nerve conduction studies (NCS) demonstrated demyelinating features in the lower limbs. Anti-IgLON5 antibodies were detected in cerebrospinal fluid. She was treated with IVlg, oral prednisolone, azathioprine and plasma exchange. A 73-year-old man presented with worsening tremor. Evolving features included facial paraesthesia, imbalance, head ‘fogginess’, visual agnosia, constipation, insomnia, sleep utterances, somnambulism, nocturnal tremor and myoclonus. NCS showed a generalised demyelinating sensorimotor polyneuropathy. Neuropathy screen demonstrated anti-IgLON5 antibodies and IgG
kappa paraprotein, leading to a new diagnosis of monoclonal gammopathy of undetermined significance (MGUS). IgLON5 autoimmunity was considered the likely explanation for the peripheral neuropathy, as sural nerve biopsy findings were not typical for MGUS-related neuropathy. He received IVlg, oral prednisolone, plasma exchange and Rituximab. During follow-up, he progressed to multiple myeloma and commenced lenalidomide and dexamethasone.

Conclusion Our two cases and the few published reports suggest an association of peripheral neuropathy and IgLON5 autoimmunity. We recommend cases of IgLON5 autoimmunity undergo routine neuropathologic studies.

REFERENCES

082 FULMINANT ADEM MIMICKING A GLIAL TUMOUR

Jessica Qiu, 1Elizabeth Thompson, 1Michael J Fulham, 1Mrudula Krishnaswamy, 1Michael E Buckland, 1Liane Kito, 1Nicolas Uriola, 1Kathryn Farratt. 1Department of Radiology, Royal Prince Alfred Hospital, Campdenow, NSW, Australia; 2Department of Molecular Imaging, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 3Department of Neuropathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Immunology, Royal Prince Alfred Hospital, Sydney, NSW, Australia

Introduction We describe an atypical case of fulminant acute disseminated encephalomyelitis (ADEM). Case A 47 year-old Southeast Asian lady presented after developing headache, aphasia and right hemiparesis over four hours, preceded by dry cough for one week and fevers for two days. CT brain noted vasogenic oedema without enhancement in the left frontoparietal lobe, midline shift and incidental upper lobe consolidation and calciﬁed hilar lymph nodes on CT chest. A provisional diagnosis of cerebral tuberculosis was made. MRI brain noted gross mass effect and T2 hyperintensity localised to the white matter, crossing the midline and extending directly to the pons without signiﬁcant restricted diffusion. Ill-deﬁned enhancement was noted without tuberculomas or leptomeningeal enhancement. MRI spine was unremarkable, as were extensive tests for infectious aetiologies on serum, sputum and CSF. A glial tumour was suspected; FDG-PET-CT did not show regions of increased metabolism. As the patient rapidly deteriorated, empirical corticosteroids, plasmapheresis and IVlg were commenced just prior to decompressive craniectomy and biopsy four days post-presentation. The biopsy demonstrated reactive astrocytosis and perivascular macrophages localised to the white matter, as well as perivascular and periventricular demyelination consistent with ADEM. Absence of a signiﬁcant lymphocytic inﬁltrate may have been inﬂuenced by the short time to biopsy. The patient made a remarkable recovery following cyclophosphamide, achieving independence in mobility and driving within two months.

Conclusion Atypical features of fulminant ADEM highlight the need for a high index of clinical suspicion and early institution of aggressive immunosuppressive therapy for a favourable outcome.

083 AN ATYPICAL CASE OF IDIOPATHIC INTRACRANIAL HYPERTENSION

1Yasser M Mansour, 2Nick Saad, 3Simon Liew, 3Sameen Haque, 1Nepean Hospital, Kingswood, NSW, Australia; 2Marsden Eye Clinic, Parramatta, NSW, Australia

Idiopathic Intracranial Hypertension (IIH) is an increasingly common condition that usually presents with younger obese female patients. Studies report between 74-94% of patients with a BMI>30,1–3 95% with ages under 50 (7) and over 87–91% of the patients being overwhelmingly females. 8–9

In this case report, we present a 66-year-old man with a BMI of 24.7 kg/m2 who was referred by his ophthalmologist with bilateral papilledema on the ophthalmic examination and OCTs. The 30-2 Humphrey Visual Field testing showed significant loss of his inferior ﬁeld on the right side. There were also early ﬁeld losses noted on the left side. Lumbar puncture showed a borderline elevated CSF opening pressure of 25 cmH2O. Initial and subsequent MRI brain and orbits have shown constellation of ﬁndings consistent with idiopathic intracranial hypertension. Extensive investigations were carried out to identify any secondary cause. These included CT venogram, CT neck, chest abdomen and pelvis, serum and CSF testing for inﬂammatory/autoimmune, paraneoplastic, infectious and metabolic causes. His non-compliance with Acetazolamide led to clinical deterioration and optic atrophy on the right side. After 2 years of the onset, the patient is clinically stable on 250 mg TDS of Acetazolamide with normal CSF opening pressure on repeat testing recently.

REFERENCES