for patients diagnosed with psoriasis. The observed prevalence of psoriasis in MS patients was 12.19% however, the true prevalence is likely to be much higher as various symptoms of psoriasis were reported by a much larger proportion of MS patients. Of the 72 cases without psoriasis, various skin symptoms that were reported were intermittent irritation (for at least 6 months) or erythematous rash (35.4%), seasonal skin changes (39.0%) and thickened scaly skin behind ears and scalps (18.3%). Moreover, 18.3% had flaky, peeling or scaly skin while 24.4% experienced dandruff. 17.1% reported nail changes, and 13.4% reported a family history of psoriasis. The study also showed that combined psoriasis and eczema was relatively common at 3.7%.

Conclusions In this pilot study there is a high prevalence of psoriasis in patients with MS suggesting an immunopathological association between the two diseases and indicates that further studies should be done to elucidate common mechanisms, and the nature of this phenotype.

REFERENCE

COMPARISON OF MULTIPLE DISEASE MODIFYING THERAPIES IN MULTIPLE SCLEROSIS WITH MARGINAL STRUCTURAL MODELS
Ibrahim Diouf, 1,2Charles B Malpas, 1,2Sifat Sharmin, 3,4Olga Skibina, 4Katherine Buzzard, 6,7Jeannette Lechner-Scott, 6Michael Barnett, 8Suzanne Hodkinson, 9Mark Slee, 10Ernest Butler, 11Pamela McCombe, 1,4Anneke van der Walt, 1,2Helmut Butzkueven, 1,2Steve Vucic, 1,2Richard Macdonell, 1,2Cameron Shaw, 1,2Ibrahima Diouf, 1,2Charles B Malpas, 1,2Sifat Sharmin, 3,4Olga Skibina, 4Katherine Buzzard, 6,7Jeannette Lechner-Scott, 6Michael Barnett, 8Suzanne Hodkinson, 9Mark Slee, 10Ernest Butler, 11Pamela McCombe, 1,4Anneke van der Walt, 1,2Helmut Butzkueven, 1,2Steve Vucic, 1,2Richard Macdonell, 1,2Cameron Shaw, 1,2Tomas Kalincik, 1,2COrE, Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; 3MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia; 4Department of Neurology, Box Hill Hospital, Melbourne, VIC, Australia; 5Monash University, Melbourne, VIC, Australia; 6The Alfred Hospital, Melbourne, Australia; 7School of Medicine and Public Health, University Newcastle, Newcastle, NSW, Australia; 8Department of Neurology, John Hunter Hospital, Hunter New England Health, Newcastle, NSW, Australia; 9Brain and Mind Centre, Sydney, Australia; 10Liverpool Hospital, Sydney, NSW, Australia; 11Funders University, Adelaide, SA, Australia; 12Monash Medical Centre, Melbourne, VIC, Australia; 13University of Queensland, Brisbane, QLD, Australia; 14Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia; 15Department of Neurology, The Alfred Hospital, Melbourne, VIC, Australia; 16Austin Health, Melbourne, VIC, Australia; 17Westmead Hospital, Sydney, NSW, Australia; 18Geelong Hospital, Geelong, VIC, Australia

Background Because of methodological challenges comparisons of multiple treatments in multiple sclerosis cohorts have been limited to pairwise and triple comparisons.

Objectives Extend marginal structural models (MSM) to allow simultaneous comparisons of multiple MS treatments.

Methods We selected patients from the MSBase registry with Clinically Isolated Syndrome and Relapsing-Remitting MS followed for ≥1 year, with ≥3 visits, ≥1 visit per year and exposed to a MS therapy. MSMs were used to compare cumulative hazards of 6-month confirmed worsening and improvement of disability, and the incidence of relapses between treatments. MSMs were continuously re-adjusted for patient age, sex, pregnancy, date from first symptom, prior relapse history and MRI activity. We used MSMs to compare the Average Treatment Effect (ATE), the effect a treatment would have had if the entire study population had been treated with this treatment vs. another treatment. We also estimated the Average Treatment Effect Among the Treated (ATT); comparison an observed effect of a treatment with a counterfactual (not observed) effect of another treatment in the same study population.

Results Among 23,687 patients, we compared ATE of glatiramer acetate (reference), interferon b, natalizumab, fingolimod, dimethyl fumarate, and teriflunomide. In ATE, a reduction of relapse frequency was more prominent on natalizumab, followed by fingolimod (47% and 24% respectively, reference: glatiramer acetate) when compared with the other treatments. The ATT models confirmed these observations.

Conclusions Compared to other DMTs natalizumab and fingolimod were associated with superior reduction in relapse frequency than glatiramer acetate, interferon beta, teriflunomide and dimethyl fumarate.

IMMUNOTHERAPY RESPONSIVE NEUROPATHIC PAIN ASSOCIATED WITH LGI1 AND CASPR2 ANTIBODIES
Sudarshini Ramananathan, 1Alexander Davies, 2Christopher Uy, 3Mandy Tseng, 2Sofija Paneva, 2Sophia Michael, 2James Varley, 2Sophie Binks, 2Andreas Theimistocleous, 2Yacov Anziska, 2Ana Candalija, 2Anshula Soni, 2Monika Hofer, 2Fabienne Brilot, 2Russell C Dale, 2John Dawes, 2Simon Rinaldi, 2David Bennett, 2Sarosh I Irani. Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Concord, NSW, Australia; 2University of Oxford, Oxford, UK

Objective We evaluated pain in leucine-rich glioma inactivated1 (LG1) and contactin-associated protein2 (CASPR2)-antibody positive (Ab+) patients, to evaluate clinical associations and pathophysiology of treatable pain syndromes.

Methods 108 LG1-Ab+, 33 CASPR2-Ab+, and 6 LG1/CASPR2-Ab+ patients were phenotyped. Pain questionnaires were undertaken to identify neuropathic pain using the Douleur Neuropathique(DN4), patient reported outcome measurement information system (PROMIS), and quality of life(EQ5D). Skin biopsies, and serum binding to cell-based assays, sensory neuronal cocultures, and dorsal root ganglion (DRG) cultures were undertaken.

Results 39/147 patients described pain, including 17/33 CASPR2-Ab+ (52%), 20/108 LG1-Ab+ (19%), and 2 LG1/CASPR2-Ab+ patients. Questionnaires completed in 23/39 (59%) revealed comparable DN4 scores (p=0.319) with 58% of LG1-Ab+ and 67% of CASPR2-Ab+ patients having neuropathic pain. Patients rated >50% response in 8/30 (27%) analgesia trials, versus 20/40 (50%) immunotherapy trials (p=0.045). PROMIS ratings were similar between LG1-Ab+ and CASPR2-Ab+ patients at nadir (p=0.662), but showed more improvement following immunotherapy in LG1-Ab+ (p=0.008) than CASPR2-Ab+ patients (p=0.125). At follow-up (median 57 months) CASPR2-Ab+ patients showed more improvement in mobility (p=0.014), daily activities (p=0.019), and anxiety/depression (p=0.043); and lower overall health (p=0.019) on the EQ5D compared to LG1-Ab+ patients. Intraepidermal nerve fibre density was reduced in 2 LG1-Ab+ and 1 CASPR2-Ab+ patients. Serum immunoglobulin G (IgG) from 6/16 CASPR2-Ab+ patients bound to sensory neuronal cocultures compared to 0/14 LG1-Ab+ patients (p=0.019) and 0/12 healthy controls. Serum IgG from 10/16 CASPR2-Ab+ patients bound to DRG cultures.
DISEASE REACTIVATION AFTER CESSION OF DISEASE-MODIFYING THERAPY IN RELAPSING-REMITTING MULTIPLE SCLEROSIS

1Izanne Rocs, 1Charles B Malpas, 2Emmanuelle Leray, 2Katherine Buzzard, 4Olga Skibina, 1Jeanette Lechner-Scott, 6Pamela McCombe, 3Mark Slez, 6Ernest Butler, 1Richard Macdonell, 5Àanneke van der Walt, 5Suzanne Hodgkinson, 1Michael Barnett, 5Steve Vuckic, 2Sandra Vukusic, 1Helmut Butzkueven, 2Tomas Kalincik. 1CORe Unit, Department of Medicine, University of Melbourne, Melbourne, VIC, Australia; 2Department of Neurology, Royal Melbourne Hospital, Melbourne, VIC, Australia; 3Rennes University, Rennes, France; 4Department of Neurology, Box Hill Hospital, Monash University, Melbourne, VIC, Australia; 5Department of Neurology, The Alfred Hospital, Melbourne, VIC, Australia; 6School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia; 7Department of Neurology, John Hunter Hospital, Hunter New England Health, Newcastle, NSW, Australia; 8Department of Neurology, Royal Brisbane and Women’s Hospital, Brisbane, QLD, Australia; 9Flinders University, Adelaide, SA, Australia; 10Monash Medical Centre, Melbourne, VIC, Australia; 11Department of Neurology, Austin Health, Melbourne, VIC, Australia; 12Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; 13Liverpool Hospital, Sydney, NSW, Australia; 14Brain and Mind Centre, Sydney, NSW, Australia; 15Westmead Hospital, Sydney, NSW, Australia; 16Hospital Neurologique Pierre Wertheimer, Lyon, France

Objective To examine factors determining risk of self-reported infections and antimicrobial use in patients receiving Ocrelizumab for MS.

Methods Retrospective, observational cohort study conducted in Ocrelizumab-treated patients at the Royal Melbourne Hospital. The association of clinical and laboratory factors with self-reported infection rate and antimicrobial use were estimated using univariate and multivariable logistic regression models.

Results 185 patients were included in the study, and 176 infections were reported in 89 patients (46.1%), and in 47 patients (25.3%) antimicrobial use was identified. In univariate analyses, a higher serum IgA was associated with reduced odds of infection (OR 0.44, 95% CI 0.25 - 0.76). In multivariable analyses, older age (OR 0.94, 95% CI 0.88 - 0.99), higher serum IgG (OR 0.37, 95% CI 0.17 - 0.80) and higher serum IgG (OR 0.81, 95% CI 0.67 - 0.99) were associated with reduced odds of infection. Older age (OR 0.85, 95% CI 0.75 - 0.96) and higher serum IgG (OR 0.23, 95% CI 0.07 - 0.79) were associated with reduced odds of antimicrobial use, whilst longer MS disease duration (OR 1.22, 95% CI 1.06 - 1.41) and higher EDSS (OR 1.99, 95% CI 1.02 - 3.86) were associated with increased odds of antimicrobial use.

Conclusions Higher serum IgA, IgG and older age were associated with reduced odds of infection. Our findings highlight non-uniformity of infection risk in Ocrelizumab-treated MS patients, and substantiate the need to monitor immunoglobulin levels pre-treatment and whilst on therapy.

REAL-WORLD EXPERIENCE WITH OCRELIZUMAB IN THE MSBASE REGISTRY – AUSTRALIAN RRMS COHORT

1Helmut Butzkueven, 2Tim Speelman, 3Tomas Kalincik, 4Katherine Buzzard, 5Àanneke van der Walt, 5Jeanette Lechner-Scott, 6Suzanne Hodgkinson, 1Ernest Butler, 1Richard Macdonell, 3Mark Slez, 1MSBase Study Group, 1Bruno Manel. 1Monash University, Melbourne, VIC, Australia; 2MSBase Foundation, Melbourne, VIC, Australia; 3University of Melbourne, Melbourne, VIC, Australia; 4Box Hill Hospital, Box Hill, VIC, Australia; 5University of Newcastle, Newcastle, NSW, Australia; 6Liverpool Hospital, Sydney, NSW, Australia; 7Monash Medical Centre, Melbourne, VIC, Australia; 8Austin Health, Melbourne, VIC, Australia; 9Flinders University, Adelaide, SA, Australia; 10Roche Products Pty Ltd, Sydney, NSW, Australia

Introduction Ocrelizumab (OCR) is a humanised anti-CD20 + monoclonal antibody for the treatment of Multiple Sclerosis.