(MOG) antibody positive but negative for (Aquaporin -4) AQP-4 antibodies. Radiological findings on MRI of the brain and spine was suggestive of multiple sclerosis (MS). Whilst receiving intravenous immunoglobulin (IVIG) as a bridging therapy to Multiple Sclerosis (MS) modifying therapy, the patient developed severe adverse reaction to IVIG with desquamation of her hands and legs. Furthermore, she did not achieve satisfactory disease control with Ocrelizumab. Has cushingoid features secondary to long term high dose steroid therapy.

Conclusions To highlight the challenges in managing a patient with refractory MOG antibody optic neuritis and its impact on the quality of life of the patient. To demonstrate the gap in available clinical evidence in the management of recurrent MOG antibody optic neuritis. To initiate an open discussion regarding the treatment of these challenging group of patients

REFERENCES


906 INTRAVENTRICULAR MIGRATION OF INTRAOCULAR SILICONE OIL

1,2,3Leon Edwards, 1,2,3Christopher Blair, 1,2,3Zeljka Calic. 1Neurology and Neurophysiology, Liverpool Hospital, Liverpool, NSW, Australia; 2Ingham Institute for Applied Medical Research, Ingham Institute, Liverpool, NSW, Australia; 3South Western Sydney Clinical school, University of New South Wales, Liverpool, NSW, Australia

Introduction We report a case of intraventricular migration of intraocular silicone oil.

Case A 53-year-old male presented with a decreased level of consciousness. His past medical history included bilateral retinal detachment, atrial fibrillation and ischaemic stroke. Initial blood tests and chest X-ray were consistent with a community acquired pneumonia. He was started on a 5-day course of IV ceftriaxone and azithromycin with improvement in his symptoms.

A CT brain was performed upon presentation given his conscious state. This demonstrated a high density in the right globe with tracking along the optic nerve and bilateral homogenous isointense spherical masses in the frontal horns of the lateral ventricles. Imaging was initially reported as bilateral vitreous haemorrhages, an optic chiasm lesion and intraventricular haemorrhage. Follow-up MRI brain confirmed the biventricular masses with evidence of a chemical shift artefact on T1 and T2 sequences. There was disappearance on the masses on fat-suppressed T1-sequences. Images were reviewed in the combined neurology-neuroradiology meeting with the diagnosis made of cerebral migration of silicone oil.

Conclusion Intraventricular migration is a rarely reported complication following intraocular silicone endotamponade. The precise mechanism of migration is unknown. As silicone appears hyperintense on CT, it may mimic a haemorrhage or mass. Cases of misidentification of intraventricular silicone have resulted in protracted hospital admissions and surgical biopsy. Typical MRI findings and a comprehensive clinical history allow for accurate identification. Early and accurate recognition is critical to avoiding unnecessary investigation and patient morbidity.

907 CASE REPORT: A ROLE FOR OCRELIZUMAB FOR MULTIPLE SCLEROSIS WITH OCULAR SARCOIDOSIS?

1Ike Leon Chen, 2Glenn Reeves, 1Yun Tae Hwang. 1Neurology Department, Gosford Hospital, Gosford, NSW, Australia; 2Coastal Neurology, Gosford, NSW, Australia

Introduction Multiple sclerosis causes a variety of clinical neurological features which may overlap with sarcoidosis with central nervous system involvement. Rarely, concurrent diagnosis of MS and sarcoidosis in an individual has been reported. Currently, best management strategy for these individuals with this dual pathology remains unknown.

Case A 54-year-old man with a 14-year history of isolated ocular sarcoidosis, as well as type 2 diabetes mellitus, hypertension, and dyslipidemia, presented with ongoing right-hand paresthesia. Gadolinium-enhanced neuroaxis MRI imaging revealed comparatively stable non-enhancing appearances of previously known numerous punctate supratentorial subcortical white matter hyperintensities, and a new non-enhancing right ventrolateral C3/4 spinal cord hyperintense lesion. The radiological pattern in combination with positive oligoclonal bands and elevated protein levels on cerebrospinal fluid testing, with normal serum ACE level, was thought to favour a diagnosis of multiple sclerosis (with McDonald criteria fulfilment), rather than neurosarcoidosis. In addition to his sarcoidosis treatment comprising prednisolone and hydroxychloroquine (later changed to mycophenolate), Ocrelizumab was selected as initial disease modifying therapy for his new relapsing remitting multiple sclerosis, due to postulated benefits for his sarcoidosis as well based on ocrelizumab’s similarity to rituximab, an established treatment option in refractory sarcoidosis.

Conclusion This case highlights several key issues:

- Recognising the possibility of co-occurrence of CNS demyelinating disease in sarcoidosis
- The diagnostic challenge of ascertaining new neurological changes in sarcoidosis
- The challenge of managing concurrent inflammatory conditions of distinctly separate aetiology

We propose that Ocrelizumab has potential utility as an option in streamlining therapeutic management of this dual pathology.

908 STROKE-LIKE MIGRAINE ATTACKS AFTER RADIATION THERAPY: BE SMART AND ORDER AN EEG

1Elaine Pang, 1,2Josephine Chan, 1David Blacker, 1Thomas Chemmanam, 1,2,3Nicholas Lawn. 1Sr Charles Gairdner Hospital, Nedlands, WA, Australia; 2Fiona Stanley Hospital, Murdoch, WA, Australia; 3Royal Perth Hospital, Perth, WA, Australia

Background Seizures may be a feature of SMART (stroke-like migraine attacks after radiation therapy) syndrome but their role in the pathophysiology and clinical presentation is unclear.
Abstracts

Method The clinical and investigation findings in a series of adult patients with SMART syndrome presenting primarily with seizures were reviewed.

Results Four patients with SMART syndrome presenting with seizures were identified (mean age 51 years). Mean time from radiation therapy to SMART syndrome was 22.5 years (range 15-32 years). Indications for radiation were primary brain tumour (three patients) and haematological malignancy (one patient). Two patients had a history of seizures prior to SMART syndrome. Three patients had headaches at presentation. All patients presented with focal impaired awareness seizures with motor features. One patient had refractory non-convulsive status epilepticus requiring intravenous anaesthesia. Three patients had persistent negative motor deficits, associated with ongoing electrographic seizures with no clinical correlate, only identified on repeated EEGs or continuous EEG (cEEG). All patients failed initial anti-seizure medications (ASM), requiring a mean of five ASMs for seizure control. All patients had enhancing cortical MRI changes consistent with SMART syndrome that corresponded to the clinical deficit and ictal changes on EEG. At follow-up all patients improved but had persistent neurological deficits.

Conclusion SMART syndrome presents with seizures and less frequently status epilepticus and may be the basis for the associated clinical features and radiologic abnormalities. Judicious use of EEG and where necessary cEEG to identify non-convulsive seizures should be considered in patients with SMART syndrome presenting with prolonged neurological deficits.

Objective Quality assurance (QA) in neuro-ophthalmology (NOPH) is often lacking. The QA registry, NODE (Neuro-ophthalmology Database), was established and implemented in tertiary NOPH clinics in Australia. We developed a consensus on triage categories according to Australian standardised triage categories: P1 (consult <30 days), P2 (consult 30-60 days) and P3 (consult >60 days).

Methods Data on 410 patients at Alfred Hospital, Melbourne was collected with NODE. We developed a consensus on assignment of NOPH conditions to triage categories using recommendations from a panel of neuro-ophthalmologists with the modified Delphi approach. The average days from referral to triage and triage to the initial consultation were compared to the developed triage category standard.

Results Most patients presenting to the service were female (n=262, 64%), aged 21 to 30 years. Common diagnoses were Idiopathic Intracranial Hypertension, IIH (24%), Optic Neuropathy, ON (17%), Headaches, (11%) Cranial Nerve Defects, CND (9%) and Eye Movement Disorders, EOMD (9%). The mean time from referral to triage was <2 days for all the common NOPH conditions. The mean time (days, ±standard deviation) from P1 category triage to initial consult for IIH was 26 (±7), ON 27 (±11), and CND was 17 (±5). The mean time (days) from P2 triage to initial consultant for Headaches was 27 (±12), and EOMD was (±17). The mean time (days) from P3 triage to initial consultant for Myasthenia Gravis was 30 (±10).

Conclusion We have established a consensus agreement on triage categories for neuro-ophthalmological conditions. We established a QA framework for other NOPH clinics in Australia.