Different AT(N) profiles and clinical progression classified by two different N markers using total tau and neurofilament light chain in cerebrospinal fluid

Kensaku Kasuga,1 Masataka Kikuchi,2,3 Tamao Tsukie,1 Kazushi Suzuki,4 Ryoko Ihara,5 Atsushi Iwata,5 Norikazu Hara,5,1 Akinori Miyashita,1 Ryozo Kuwano,6 Takeshi Iwatsubo,7 Takeshi Ikeuchi,1,1 the Japanese Alzheimer’s Disease Neuroimaging Initiative8

ABSTRACT

Background The AT(N) classification was proposed for categorising individuals according to biomarkers. However, AT(N) profiles may vary depending on the markers chosen and the target population.

Methods We stratified 177 individuals who participated in the Japanese Alzheimer’s Disease Neuroimaging Initiative by AT(N) classification according to cerebrospinal fluid (CSF) biomarkers. We compared the frequency of AT(N) profiles between the classification using total tau and neurofilament light chain (NfL) as N markers (AT(N)tau and AT(N)NfL) classifications. When we used t-tau as the N marker (AT(N)tau), those who had T− were more frequently assigned to (N)+, whereas those who had T+ were more frequently assigned to (N)− than when we used NfL as the T marker (AT(NfL)). During a follow-up, the AD continuum group progressed clinically and biologically compared with the normal biological AD profile (ie, A+T+) in the cohort. The frequency of AT(N) profiles substantially differed between the AT(N)tau and AT(NfL) classifications. When we used t-tau as the N marker (AT(N)tau), those who had T− were more frequently assigned to (N)+, whereas those who had T+ were more frequently assigned to (N)−.

Results We found that 9% of cognitively unimpaired subjects, 49% of subjects with mild cognitive impairment, and 61% of patients with Alzheimer’s disease (AD) dementia had the biological AD profile (ie, A+T+) in the cohort. The frequency of AT(N) profiles substantially differed between the AT(N)tau and AT(NfL) classifications. When we used t-tau as the N marker (AT(N)tau), those who had T− were more frequently assigned to (N)+, whereas those who had T+ were more frequently assigned to (N)− than when we used NfL as the N marker (AT(NfL)). During a follow-up, the AD continuum group progressed clinically and biologically compared with the normal biomarker group in both the AT(N)tau and AT(NfL) classifications. More frequent conversion to dementia was observed in the non-AD pathological change group in the AT(N)tau classification, but not in the AT(NfL) classification.

Conclusions AT(N)tau and AT(NfL) in CSF may capture different aspects of neurodegeneration and provide a different prognostic value. The AT(N) classification aids in understanding the AD continuum biology in various populations.

INTRODUCTION

As the population ages, the number of patients with dementia is expected to increase worldwide including in Asia.1 Alzheimer’s disease (AD) is pathologically characterised by β-amyloid (Aβ) deposition and fibrillar phosphorylated tau accumulation.2 Biofluid and molecular neuroimaging biomarkers have been explored to capture key aspects of the neuropathological changes of AD.

A research framework biologically defines AD by using biomarkers that reflect the brain pathology in vivo independent of clinical symptoms.3 In the framework, each individual is classified into one of eight categories by dichotomous determination according to the AT(N) system, where the cerebrospinal fluid (CSF) biomarkers of Aβ deposition (A), fibrillar tau (T) and neurodegeneration or
neuronal injury (N) are defined by the Aβ42 or Aβ42/40 ratio, phosphorylated tau (p-tau) and total tau (t-tau), respectively. Through this research framework, AD has been conceptualised as a continuum covering asymptomatic, mild cognitive impairment (MCI) and dementia stages. The prevalence of the AT(N) classification has been investigated mostly among Caucasians, although a few studies have been reported for other ethnic groups. Studies on Asian populations did not address the longitudinal clinical and biological changes among AT(N) profiles. Because the prognostic value of AT(N) profiles may vary depending on the target population, the research framework should be further investigated in various populations including Asians.

Another issue of the AT(N) system is with regard to a biofluid N marker. Currently, CSF t-tau is assigned to the N marker. Since the research framework was advocated, evidence of CSF neurofilament light chain (NfL) as an N marker have been accumulated. NIL and t-tau in CSF are not always well correlated, suggesting that these markers may reflect different aspects in neurodegeneration.3-11

Using CSF samples collected by Japanese Alzheimer’s Disease Neuroimaging Initiative (J-ADNI), this study aimed to clarify (1) the characteristics of CSF biomarkers in a J-ADNI cohort, (2) the frequencies of AT(N) profiles by comparing two different N markers (t-tau and NIL), and (3) the clinical and biological characterisations according to AT(N) profiles at both baseline and follow-up.

METHODS

Participants

J-ADNI was initiated to discover the fluid and imaging biomarkers of AD using a harmonised protocol with ADNI.12 Briefly, volunteer participants aged between 60 and 84 years were recruited from 38 clinical sites in Japan. Cognitively unimpaired (CU) subjects, subjects with MCI, and patients with AD dementia (ADD) were enrolled into J-ADNI using criteria consistent with those of ADNI.13 Their clinical and neuropsychological data were obtained from the National Bioscience Database Center (https://humanbbs.bioscienceedbc.jp/en/hum0043-v1).

Out of 715 volunteers assessed for eligibility, 537 met the criteria and were enrolled. Out of 537 participants recruited in J-ADNI (CU, 154; MCI, 234; ADD, 149), 4 withdrew their consent. Of the 533 remaining participants, 194 (CU, 53; MCI, 86; ADD, 55) underwent lumbar puncture. The incidence of postdural puncture headache was 2.6%, and that of severe postdural puncture headache that required hospitalisation was 0.7%. All these 194 participants were analysed using AD core biomarkers including Aβ42, tau phosphorylated at threonine 181 (p-tau181), and t-tau. Due to sample availability, CSF NIL was measured in 177 participants (CU, 46; MCI, 82; ADD, 49). At 12 months, longitudinal changes in CSF biomarkers classified by AT(N) profiles were analysed in 126 participants (CU, 38; MCI, 56; ADD, 32) (online supplemental figure 1).

Lumbar puncture and biochemical analysis

CSF was collected by lumbar puncture, transferred into polypropylene tubes followed by freezing and shipped to the J-ADNI Biomarker Core at Niigata University. CSF was aliquoted at a volume of 0.5 mL and stored at −80°C until the assay. The CSF concentrations of Aβ42, p-tau181, and t-tau were examined using on AlzBio3 kit (Fujirebio, Ghent, Belgium), and that of NIL was measured using R-PLEX Human Neurofilament L Antibody Set (Mesoscale Discovery, Rockville, MD). All analyses were conducted in duplicate by experienced laboratory personnel blinded to the clinical diagnosis. The intra-assay and interassay coefficients of variation were <20% for all assays. The laboratory at Niigata University participates in the Alzheimer’s Association external quality control programme for CSF biomarkers.

We previously used CSF Aβ42<333 pg/mL as the cut-off value for Aβ positivity.12 15 Thereafter, we have established a protocol for AD core biomarker measurements unified with the ADNI Biomarker Core (PI: Leslie M. Shaw, PhD). We used this unified protocol for remeasuring the CSF biomarkers. Subsequently, we conducted the area under the receiver operating characteristic curve analysis (PET Aβ-negative (PET Aβ−, n=47) vs positive (PET Aβ+, n=53); CU with PET Aβ− (n=31) vs ADD with PET Aβ+ (n=22); CU (n=53) vs ADD (n=56)), and calculated the optimal cut-off values according to Youden’s index (online supplemental figures 2 and 3). Furthermore, we used Gaussian mixture models (GMMs) for calculating the cut-off value of CSF biomarkers (n=194), excluding NIL, which was unsuitable for GMMs because of the unimodal distribution (online supplemental figure 2).

PET image acquisition and clinical evaluation

All PET images underwent the J-ADNI PET quality control process as previously described.16 Cognitive performance was assessed using the Mini-Mental State Examination (MMSE), Alzheimer’s Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), and the sum of boxes of the Clinical Dementia Rating (CDR-SB). Instrumental activities of daily living were assessed using the Functional Assessment Questionnaire (FAQ). In this study, when the CDR changed from 0 or 0.5 to ≥1 during a follow-up, the patient was considered to have progressed to dementia.

Statistical analysis

Data were analysed statistically using GraphPad Prism (V.8.2.0; GraphPad Software, La Jolla, California, USA) and the software R. For continuous variables, we used the Mann-Whitney U test for comparing two groups and the Kruskal-Wallis test for comparing multiple groups, followed by Dunn’s multiple-comparison test. For categorical variables, groups were compared using the χ2 test. The correlation between two data sets was assessed using Spearman’s rank-correlation coefficient. For the longitudinal analyses of changes in CSF biomarker, we compared slopes with zero by linear regression model analyses. The covariates included age, sex and education years. For
Additionally, random slopes and random intercepts of the follow-up time were included as the random factors for the longitudinal analyses of the clinical scores. P values were adjusted by false discovery rate to avoid type I error.

RESULTS
Demographics of participants
At baseline, CSF samples were collected from 194 participants with CU (n=53, 27.3%), MCI (n=86, 44.3%) and ADD (n=55, 28.4%). Of the 194 participants, 100 (51.5%) were Aβ positive (online supplemental table 1). Due to sample availability, 177 (91.2%) of the 194 participants had CSF NfL measurements at the baseline, and 126 (64.9%) underwent follow-up lumbar puncture after 12 months.

Cross-sectional analysis of CSF biomarkers
The correlations between baseline characteristics and CSF biomarkers were analysed. Both the MCI and ADD groups showed significantly lower CSF Aβ42 level and higher p-tau181, t-tau and NfL levels than the CU group. Additionally, the CSF Aβ42 level was significantly lower in the ADD group than in the MCI group (online supplemental figure 4A). In all groups, age showed a significant positive correlation with p-tau181, t-tau, and NfL level except for Aβ42 (online supplemental figure 4B). Years of education also positively correlated with CSF Aβ42 level but not with p-tau181, t-tau, nor NfL level (online supplemental figure 4C). In addition, males showed significantly higher CSF NfL levels than females (online supplemental figure 4D). Both APOE ε4 heterozygous and homozygous carriers showed significantly lower CSF Aβ42 levels and higher p-tau181, t-tau and NfL levels than non-carriers (online supplemental figure 4E).

Next, correlations among CSF biomarkers were analysed. We found that Aβ42 level moderately negatively correlated with p-tau181, t-tau, and NfL levels. As expected, p-tau181 and t-tau levels were highly correlated (r=0.7923, p<0.0001). NfL level showed moderately positive correlations with p-tau181 (r=0.2487, p=0.0008) and t-tau levels (r=0.4907, p<0.0001) (online supplemental figure 5).

AT(N) classification at baseline
We used CSF Aβ42 as the A marker, p-tau181 as the T marker, and t-tau or NfL as the N marker. AT(N)_A and AT(N)_N were defined using t-tau and NfL as the N marker, respectively. We classified the participants into eight AT(N) categories.

The cut-off value was compared by different methods. When comparing clinical status (CU vs ADD) with PET status (PET Aβ− vs PET Aβ+), the cut-off values were

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Cut-off values of AT(N) biomarkers based on different models</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysed samples</td>
<td>Aβ42</td>
</tr>
<tr>
<td>Aβ PET− (n=47) vs Aβ PET+ (n=53)</td>
<td></td>
</tr>
<tr>
<td>Area under the ROC curve (95% CI)</td>
<td>0.940 (0.885 to 0.995)</td>
</tr>
<tr>
<td>Cut-off value, pg/mL</td>
<td>378.7</td>
</tr>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>98.1 (90.1 to 99.9)</td>
</tr>
<tr>
<td>Specificity, % (95% CI)</td>
<td>85.1 (72.3 to 92.6)</td>
</tr>
<tr>
<td>CU, Aβ PET− (n=31) vs ADD, Aβ PET+ (n=22)</td>
<td></td>
</tr>
<tr>
<td>Area under the ROC curve</td>
<td>0.962 (0.907 to 1.000)</td>
</tr>
<tr>
<td>Cut-off value, pg/mL</td>
<td>361.6</td>
</tr>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>100 (85.1 to 100)</td>
</tr>
<tr>
<td>Specificity, % (95% CI)</td>
<td>87.1 (71.2 to 94.9)</td>
</tr>
<tr>
<td>CU (n=53) vs ADD (n=56)</td>
<td></td>
</tr>
<tr>
<td>Area under the ROC curve</td>
<td>0.888 (0.821 to 0.954)</td>
</tr>
<tr>
<td>Cut-off value, pg/mL</td>
<td>288.6</td>
</tr>
<tr>
<td>Sensitivity, % (95% CI)</td>
<td>82.1 (70.2 to 90.0)</td>
</tr>
<tr>
<td>Specificity, % (95% CI)</td>
<td>88.7 (77.4 to 94.7)</td>
</tr>
<tr>
<td>Gaussian Mixture Model (n=194)</td>
<td></td>
</tr>
<tr>
<td>Cut-off value, pg/mL</td>
<td>359.6</td>
</tr>
</tbody>
</table>

The cutoffs were established at the highest Youden Index (sensitivity +specificity – 1) when comparing Aβ PET− with Aβ PET+, or comparing CU, Aβ PET− with ADD, Aβ PET+, or comparing CU with ADD. The sensitivity and specificity are for each cut-off value.

*Cutoffs were not established for Aβ42 due to unimodal distribution.

ADD, Alzheimer’s disease dementia; Aβ, β-amyloid; CU, cognitively unimpaired subjects; NA, not available; NfL, neurofilament light chain; p-tau181, tau phosphorylated at threonine 181; ROC, receiver operating characteristic; t-tau, total tau.
Table 2 Baseline characteristics of 8 AT(N) profile groups

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No (%)</td>
<td>52 (29.4)</td>
<td>3 (1.7)</td>
<td>4 (2.3)</td>
<td>3 (1.7)</td>
<td>37 (20.9)</td>
<td>4 (2.3)</td>
<td>10 (5.6)</td>
<td>64 (36.2)</td>
<td></td>
</tr>
<tr>
<td>Age, years (IQR)</td>
<td>67 (9)</td>
<td>77 (4)</td>
<td>74 (5)</td>
<td>75 (3)</td>
<td>71 (10)</td>
<td>74 (8)</td>
<td>73 (9)</td>
<td>74 (9)</td>
<td>0.109</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>23 (44.2)</td>
<td>2 (66.7)</td>
<td>1 (25.0)</td>
<td>2 (66.7)</td>
<td>18 (48.6)</td>
<td>1 (25.0)</td>
<td>4 (40.0)</td>
<td>36 (56.3)</td>
<td>0.692</td>
</tr>
<tr>
<td>Education, years (IQR)</td>
<td>14 (4)</td>
<td>16 (2)</td>
<td>16 (2)</td>
<td>12 (4)</td>
<td>10 (4)</td>
<td>13 (3)</td>
<td>13 (4)</td>
<td></td>
<td>0.091</td>
</tr>
<tr>
<td>APOE ε4 allele (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>0</td>
<td>49 (94.2)</td>
<td>2 (66.7)</td>
<td>3 (75.0)</td>
<td>2 (66.7)</td>
<td>16 (43.2)</td>
<td>1 (25.0)</td>
<td>3 (30.0)</td>
<td>19 (29.7)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3 (5.8)</td>
<td>1 (33.3)</td>
<td>1 (25.0)</td>
<td>1 (33.3)</td>
<td>18 (48.6)</td>
<td>2 (50.0)</td>
<td>6 (60.0)</td>
<td>31 (48.4)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (8.1)</td>
<td>1 (25.0)</td>
<td>1 (10.0)</td>
<td>14 (21.9)</td>
<td></td>
</tr>
<tr>
<td>Clinical status, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>CU</td>
<td>31 (59.6)</td>
<td>1 (33.3)</td>
<td>2 (50.0)</td>
<td>1 (33.3)</td>
<td>7 (18.9)</td>
<td>0 (0)</td>
<td>1 (10.0)</td>
<td>3 (4.7)</td>
<td></td>
</tr>
<tr>
<td>MCI</td>
<td>21 (40.4)</td>
<td>2 (66.7)</td>
<td>1 (25.0)</td>
<td>2 (66.7)</td>
<td>14 (37.8)</td>
<td>2 (50.0)</td>
<td>5 (50.0)</td>
<td>35 (54.7)</td>
<td></td>
</tr>
<tr>
<td>ADD</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (25.0)</td>
<td>0 (0)</td>
<td>16 (43.2)</td>
<td>2 (50.0)</td>
<td>4 (40.0)</td>
<td>26 (40.6)</td>
<td></td>
</tr>
<tr>
<td>MMSE (IQR)</td>
<td>29 (2)</td>
<td>27 (2)</td>
<td>28 (3)</td>
<td>25 (3)</td>
<td>25 (6)</td>
<td>24 (2)</td>
<td>25 (2)</td>
<td>25 (5)</td>
<td></td>
</tr>
<tr>
<td>ADAS-Cog (IQR)</td>
<td>9.4 (9.1)</td>
<td>20.7 (10.3)</td>
<td>9.7 (7.4)</td>
<td>23.0 (10.7)</td>
<td>21.3 (12.7)</td>
<td>25.8 (14.1)</td>
<td>22.2 (10.8)</td>
<td>23.3 (9.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>CDR-SB (IQR)</td>
<td>0 (0.5)</td>
<td>2.5 (1.5)</td>
<td>0.5 (0.5)</td>
<td>0.5 (1.5)</td>
<td>1.5 (2.5)</td>
<td>2.8 (2.0)</td>
<td>2.0 (2.0)</td>
<td>2.0 (2.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>FAQ (IQR)</td>
<td>0 (0)</td>
<td>9 (8)</td>
<td>0 (3)</td>
<td>0 (8)</td>
<td>5 (6)</td>
<td>6 (2)</td>
<td>4 (6)</td>
<td>5 (10)</td>
<td><0.001</td>
</tr>
<tr>
<td>Aβ PET, n (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Negative</td>
<td>34 (100)</td>
<td>1 (50.0)</td>
<td>1 (100)</td>
<td>1 (33.3)</td>
<td>2 (14.3)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (10.0)</td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>0 (0)</td>
<td>1 (50.0)</td>
<td>0 (0)</td>
<td>2 (66.7)</td>
<td>12 (85.7)</td>
<td>1 (100)</td>
<td>3 (100)</td>
<td>27 (90.0)</td>
<td></td>
</tr>
<tr>
<td>BL Aβ42, pg/mL (IQR)</td>
<td>485.2 (101.7)</td>
<td>373.7 (99.1)</td>
<td>541.2 (144.9)</td>
<td>431.5 (148.8)</td>
<td>240.7 (99.9)</td>
<td>198.8 (88.8)</td>
<td>254.8 (73.4)</td>
<td>234.0 (65.0)</td>
<td><0.001</td>
</tr>
<tr>
<td>BL p-tau, pg/mL (IQR)</td>
<td>19.2 (4.5)</td>
<td>25.7 (2.2)</td>
<td>37.8 (7.1)</td>
<td>35.3 (10.4)</td>
<td>22.1 (6.2)</td>
<td>28.1 (1.9)</td>
<td>38.2 (6.8)</td>
<td>47.3 (23.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>BL t-tau, pg/mL (IQR)</td>
<td>58.4 (29.6)</td>
<td>132.0 (37.4)</td>
<td>76.1 (14.3)</td>
<td>140.7 (14.3)</td>
<td>71.7 (37.9)</td>
<td>118.2 (42.0)</td>
<td>89.2 (30.1)</td>
<td>151.7 (67.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>BL NfL, pg/mL (IQR)</td>
<td>2421.6 (1344.7)</td>
<td>5055.5 (3295.7)</td>
<td>2663.6 (1101.9)</td>
<td>2479.2 (2428.3)</td>
<td>2959.0 (1508.0)</td>
<td>7850.2 (13779.4)</td>
<td>2874.5 (818.1)</td>
<td>3515.2 (1130.2)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Continued

CU 27 (69.2) 5 (31.3) 3 (60.0) 0 (0) 7 (35.0) 0 (0) 4 (12.5) 0 (0) <0.001
MCI 12 (80.8) 11 (68.8) 2 (40.0) 1 (50.0) 8 (40.0) 8 (38.1) 18 (56.3) 22 (52.4) <0.001
ADD 0 (0) 0 (0) 0 (0) 1 (50.0) 5 (25.0) 13 (61.9) 20 (70.4) <0.001
MMSE (IQR) 29 (2) 28 (3) 30 (3) 25 (5) 24 (5) 25 (4) 24 (5) <0.001
ADAS-Cog (IQR) 8.3 (7.5) 13.7 (12.4) 9.7 (15.6) 21.9 (5.2) 16.0 (16.0) 24.7 (5.4) 23.2 (9.6) 23.7 (8.9) <0.001
CDR-SB (IQR) 0 (0) 1.0 (1.0) 0.5 (1.0) 2.0 (1.5) 1.5 (2.5) 2.5 (3.0) 2.3 (2.5) 2.0 (2.0) <0.001
FAQ (IQR) 0 (0) 2 (2) 0 (3) 4 (4) 5 (7) 6 (5) 5 (7) 5 (10) <0.001
Aβ PET, n (%) <0.001
Negative 25 (100) 10 (90.9) 2 (66.7) 0 (0) 2 (22.2) 0 (0) 1 (7.7) 2 (10.0) <0.001
Positive 0 (0) 1 (9.1) 1 (33.3) 1 (100) 7 (77.8) 6 (100) 12 (92.3) 18 (90.0) <0.001
BL Aβ42, pg/mL (IQR) 479.7 (84.3) 501.3 (139.4) 568.2 (230.8) 486.3 (54.9) 214.7 (137.8) 240.7 (66.2) 241.9 (34.2) 237.5 (80.7) <0.001
BL p-tau, pg/mL (IQR) 19.2 (4.1) 21.0 (7.2) 35.3 (4.0) 41.0 (9.8) 22.4 (7.0) 23.0 (7.0) 40.5 (13.7) 44.4 (21.4) <0.001
BL t-tau, pg/mL (IQR) 54.6 (24.4) 88.0 (30.6) 82.8 (34.3) 114.3 (33.7) 59.1 (23.6) 92.4 (15.7) 128.3 (43.5) 155.3 (68.3) <0.001
BL NfL, pg/mL (IQR) 2106.9 (1118.0) 4147.5 (1243.0) 2464.2 (167.0) 5922.1 (1398.6) 2414.6 (570.9) 3901.7 (3674.1) 2640.4 (522.3) 3785.2 (943.6) <0.001
Numbers are median (IQR) for continuous variables and raw number (percentage) for categorical variables.

Differences in baseline characteristics of participants across 8 AT(N) profiles were first assessed using Kruskal-Wallis rank sum test for continuous variables, or a χ² test for categorical variables.

ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognitive Subscale; ADD, Alzheimer’s disease dementia; Aβ, β-amyloid; BL, baseline; CDR-SB, sum of boxes of the Clinical Dementia Rating; CU, cognitively unimpaired subjects; FAQ, Functional Assessment Questionnaire; MCI, mild cognitive impairment; MMSE, Mini-Mental State Examination; NfL, neurofilament light chain; p-tau181, tau phosphorylated at threonine 181; t-tau, total tau.
Figure 1 Frequency of the AT(N) profiles in the Japanese ADNI cohort. Each AT(N) category is shown by different colours in the top panel: A−T−(N)− (light grey), A−T−(N)+ (grey), A−T+(N)− (light blue), A−T+(N)+ (blue), A+T−(N)− (light orange), A+T−(N)+ (orange), A+T+(N)− (lavender), and A+T+(N)+ (violet). The upper bar (AT(N)NfL) shows the frequency of AT(N) categories based on CSF Aβ42, p-tau181, and total tau used as the A, T and N markers, respectively. The lower bar (AT(N)tau) shows the frequency of AT(N) categories based on CSF Aβ42, p-tau181, and total tau used as the A, T and N markers, respectively. Numbers on bars indicate the number of participants classified to each AT(N) profile. Arrows indicate three groups, namely, the normal biomarker (light grey), non-AD pathological change (dark blue), and AD continuum (dark red). ADD, Alzheimer’s disease dementia; CSF, cerebrospinal fluid; CU, cognitively unimpaired; MCI, mild cognitive impairment; NfL, neurofilament light chain.

Longitudinal changes of AT(N) profiles

In 126 participants with follow-up CSF examination at 12 months, changes in the levels of most of the biomarkers were not statistically significant. After 12 months, the p-tau181 level significantly elevated in the A−T−(N)− category by both AT(N) classifications, in A+T−(N)− by AT(N)NfL classification, and in A+T+(N)+ by AT(N)tau classification (online supplemental table 3, online supplemental figure 6). In contrast, a subset of participants in the A+T+ category with undetectable neurodegeneration (A+T+(N)−) showed elevated t-tau levels (online supplemental figure 6); thus, they were classified into (N)+ in AT(N)tau (figure 1).

AT(N) classification: comparison between t-tau and NfL

We compared the frequencies of AT(N) categories between AT(N)tau and AT(N)NfL. In AT(N)tau, the most common was A+T+(N)+ (n=64, 36.2%), followed by A−T−(N)− (n=52, 29.4%) and A+T−(N)− (n=37, 20.9%) (figure 1). Considering the high correlation between t-tau and p-tau181 (online supplemental figure 5), CSF t-tau may not be a fully independent marker of neurodegeneration in the AD continuum.

In AT(N)NfL, the frequencies of the A−T−(N)−, A+T−(N)−, and A+T+(N)+ categories decreased to 22.0% (n=39), 11.3% (n=20), and 23.7% (n=42) compared with AT(N)tau, respectively (figure 1). Thus, the subsets of participants in the A−T− and A+T− categories with neurodegeneration (A−T−(N)NfL− and A+T−(N)tau−) were classified into (N)− in AT(N)tau (figure 1). Supporting this finding, the subsets of participants in the A−T−(N)− and A−T+(N)− categories showed elevated NfL levels (online supplemental figure 6). In contrast, a subset of participants in the A+T+ category with undetectable neurodegeneration (A+T+(N)NfL−) showed elevated t-tau levels (online supplemental figure 6); thus, they were classified into (N)+ in AT(N)tau (figure 1).
progressed to A+T+(N)+ (20.0%) (figure 2B). Hence, participants with the A− profile rarely progressed to A+ within 12 months. Conversely, approximately 40% of participants with A+T− progressed to A+T+ and 10%–20% of participants with A+T+(N)− progressed to A+T+(N)+ within 12 months in either the AT(N)tau or AT(N)NfL classification (figure 2). Notably, longitudinal changes of AT(N) profiles were different in A+T−(N)+ and A+T+(N)− categories between the AT(N)tau and AT(N)NfL classifications (figure 2).

Longitudinal change of cognitive functions

Owing to the small sample size of some of the AT(N) categories, we categorised eight AT(N) profiles into three groups, namely, the normal biomarker (A−T−(N)−), AD continuum (A+T−(N)−/+/A+T−(N)−/+), AD pathological change (A−T−(N)−/+ to A+T+(N)+) and AD, Alzheimer’s disease.

Figure 2 Longitudinal changes of AT(N) profile in AT(N)_tau (A) and AT(N)_NfL classifications (B) during the 12-month follow-up. The vertical bar on the left shows the frequency and number of subjects classified to each AT(N) profile at the baseline. The horizontal bars on the right show the AT(N) profiles at 12 months. The orange line under the horizontal bar indicates participants who showed biological progression within the AD continuum (ie, A−T−(N)−/− to A+T−(N)−/+, A+T−(N)−/− to A+T+(N)−/+, and A+T+(N)− to A+T+(N)+). AD, Alzheimer’s disease.

differences were observed in the AT(N)_tau classification (figure 3).

We conducted LMM analysis to evaluate cognitive decline assessed by four clinical measures (MMSE, ADAS-Cog13, CDR-SB and FAQ) during the follow-up period up to 36 months. All the clinical measures in the AD continuum and non-AD pathological change groups declined faster than in the normal biomarker group, except for the CDR-SB of the non-AD pathological change group in AT(N)_NfL classification (table 3, figure 4).

Clinical conversion into dementia

Of 139 participants, 57 (41.0%) clinically converted into dementia during 36 months of follow-up. The subjects who converted to dementia exhibited significantly higher levels of t-tau and NfL at the baseline than the non-converters (t-tau, p<0.001; NfL, p=0.0033).

Cox proportional hazard analysis showed that the AD continuum and non-AD pathological change groups converted into dementia more frequently than the normal biomarker group, except for the CDR-SB of the non-AD pathological change group in AT(N)_NfL classification (figure 5A). In the AT(N)_NfL classification, only the AD continuum group converted into dementia more
Discordance of prognosis in the non-AD pathological change group between the AT(N) tau and AT(N) NfL classifications suggests that CSF t-tau elevation without Aβ42 reduction (A−(N) tau+) may be related to a higher rate of conversion to dementia; conversely, no such relationship was found in the case of CSF NfL elevation without Aβ42 reduction.

DISCUSSION

In this paper, we show the results of CSF biomarker analysis among J-ADNI participants from the preclinical stage to dementia who were longitudinally followed up for 3 years. We found that 8.7%, 48.8% and 61.2% of the CU, MCI, and ADD groups had the biological AD profile (ie, A+T+), respectively (Table 2, Figure 1). By comparing the N marker between t-tau and NfL, we found that the AT(N) profiles showed different frequencies. When we used
t-tau as the N marker (AT(N)$_{tau}$), those who had T− were more frequently assigned to (N)−, whereas those who had T+ were more frequently assigned to (N)+ compared with the case of using NfL as the N marker (AT(N)$_{NfL}$) (table 2, figure 1). This finding may be explained by the high correlation between t-tau and p-tau181. Participants with A− rarely changed to A+, but approximately 40% of the participants with A+T− changed to A+T+ in 12 months (figure 2). Finally, four A+ groups, that is, the AD continuum group declined clinically and cognitively compared with the normal biomarker group. Notably, when we used AT(N)$_{tau}$ classification, the non-AD pathological change group showed a significantly higher conversion rate than the normal biomarker group (figure 5).

Since the NIA-AA Research Framework was published, the prevalence of biological AD according to CSF biomarker analysis has been reported (online supplemental table 4). We demonstrated the different characteristics between t-tau and NfL used as N markers. Results showed that t-tau moderately correlated with NfL (r=0.49; online supplemental figure 5), but highly correlated with p-tau181 (r=0.79), consistent with previous reports. In the AT(N)$_{tau}$ classification, participants with T− showed the (N)− profile more frequently, whereas those with T+ showed the (N)+ profile more frequently (table 2, figure 1). CSF NfL has been reported to reflect neurodegeneration more closely than t-tau in the AD continuum. Recently, it has been reported that Aβ deposition in the brain facilitates the secretion of tau fragments in CSF. Thus, the mechanism of tau elevation in CSF in the AD continuum may differ from the mechanism(s) underlying other types of neuronal injury with the non-AD pathology. It should be noted that each of the fluid and imaging biomarkers have a different prognostic value.

Considering that both fluid and imaging biomarkers are continuous values along the course of the AD continuum, AT(N) classification defined by dichotomising the cut-off value should be cautiously interpreted. In our comparison, the cut-off value used for distinguishing PET Aβ+ individuals from PET Aβ− individuals was substantially higher than that used for distinguishing individuals with ADD from those with CU (378.7 pg/mL vs 288.6 pg/mL, table 1). Similarly, the cut-off values for the T and N markers that discriminate the PET Aβ status were lower than those that discriminate the clinical status. Considering that approximately 20% of ADD cases could be clinically misdiagnosed as dementia with the non-AD pathology and 30% of elderly people without cognitive impairment have the AD pathology, determination of the cut-off value using clinically diagnosed samples should be conducted with caution. An unbiased method has
been reported to overcome this problem, because it does not depend on the clinical information of the samples.29 Notably, there is discrepancy in the cut-off value of CSF Aβ42 between ADNI and our study (J-ADNI).12, 13 The discrepancy may be explained by the differences in the methods used to determine the cut-off value, background characteristics and ethnic background.

Our study revealed that CSF biomarkers were useful in predicting longitudinal progression in the J-ADNI cohort, as reported in western cohorts (table 3, figure 5).8, 22 Conversion to dementia was most frequent in participants in the AD continuum group. Biologically, A− participants rarely converted into A+; however, approximately 40% of A+T− participants converted into A+T+ within 12 months (figure 2). In the US-ADNI study, CSF p-tau has a faster annual rate of change than CSF Aβ42, consistent with our results.30 Taken together, A+ participants have a high risk of clinical and biological progression.

This study has several limitations. First, some AT(N) profiles had a small sample size, possibly yielding an insufficient statistical power for detecting significant differences between groups. Second, the follow-up period of 12 months for CSF assessment was relatively short. Thus, the longitudinal changes of biomarkers shown in previous reports could not be detected in our study.31–33 Third, participants of J-ADNI were clinically evaluated and not diagnosed by autopsy. For example, the aetiological cause in subjects with the A−T− (N)+ profile is likely to be small vessel diseases and non-tau dementia; however, this assumption needs to be confirmed by further study. Finally, to better understand the optimal N marker, further studies are required to confirm the correlation between biofluid markers and neuroimaging markers such as volumetric MRI.

CONCLUSION

In this study, we determined the frequency of the AT(N) profiles in the J-ADNI cohort using two different N markers in CSF. The biological AD profile (A+T+) was found in 9%, 49%, and 61% of participants with CU, MCI and ADD, respectively. The AT(N) profile showed different frequencies between AT(N)\textsubscript{tau} and AT(N)\textsubscript{Aβ42}. Irrespective of the classification, participants with the AD continuum group progressed clinically and biologically. CSF NIL may be more reflective N-marker than t-tau in AD continuum. The AT(N) classification would aid in understanding the AD continuum biology in various populations.

Author affiliations
\begin{itemize}
 \item 1Molecular Genetics, Niigata University Brain Research Institute, Niigata, Japan
 \item 2Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
 \item 3Computational Biology and Medical Science, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
 \item 4Neurology, National Defense Medical College, Tokorozawa, Japan
 \item 5Neurology, Tokyo Metropolitan Geriatric Medical Center Hospital, Tokyo, Japan
 \item 6Ashigawasao Research Institute, Okayama, Japan
\end{itemize}

Acknowledgements

We thank participants of J-ADNI and their partners for their contribution to the study. We thank Mr. Kohei Sato, Ms. Yuko Kudo, Yuki Ogawa, Reina Sato and Eri Furukawa for their technical assistance. We are grateful to all the participants of J-ADNI and their caregivers. J-ADNI was supported by the following grants: Translational Research Promotion Project from the New Energy and Industrial Technology Development Organization of Japan; Research on Dementia, Health Labor Sciences Research Grant; Life Science Database Integration Project of Japan Science and Technology Agency; Research Association of Biotechnology (contributed by Astellas Pharma Inc., Bristol-Myers Squibb, Daiichi-Sankyo, Eisai, Eli Lilly and Company, Merck-Banyu, Mitsubishi Tanabe Pharma, Pfizer, Shionogi & Co, Sumitomo Dainippon, and Takeda Pharmaceutical Company), Japan, and a grant from an anonymous Foundation.

Collaborators

Contributors

Idegawa, Noriko Toya, Kazunari Ishii.

Contributors

KX contributed to the concept of the study, analysis of the data and wrote the manuscript. MK contributed to the concept of the study, analysis of the data and wrote the manuscript. TT contributed to acquisition of the data and analysis of the data. KS contributed acquisition of the data. RI contributed to acquisition of the data. AH contributed to interpretation of the data. AM contributed to analysis of the data. RK contributed to acquisition of the data. TW contributed to the acquisition of the data. YK contributed to the conception of the study, drafting the manuscript and critical revision of the manuscript and is responsible for the overall content as guarantor. J-ADNI contributed to acquisition of the data. YK contributed to the conception of the study, drafting the manuscript and critical revision of the manuscript and is responsible for the overall content as guarantor.

Funding

This study was supported by AMED under grant number JP22dm0031703, JP22dk0052057, 22dk007509 and 22em0525019.

Competing interests

No, there are no competing interests.

Ethics approval

This study involves human participants and was approved by Niigata University Ethics CommitteeReference number: H25-636. The Ethics Committee of Niigata University approved this study (2018-0409). Participants gave informed consent to participate in the study before taking part.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

Data are available on reasonable request.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access

This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Kensaku Kasuga http://orcid.org/0000-0002-1718-0769
Norikazu Hara http://orcid.org/0000-0001-8525-3469
Takeshi Ikeuchi http://orcid.org/0000-0001-8828-8085

REFERENCES

Recent publications

30 Toledo JB, Xie SX, Trojanowski JO, et al. Longitudinal change in CSF tau and \(\beta \)-amyloid \(\alpha \)-f3 cutoffs for up to 48 months in ADNI. *Acta Neuropathol* 2013;126:659–70.