Neurofilament light oligomers in neurodegenerative diseases: quantification by homogeneous immunoassay in cerebrospinal fluid

ABSTRACT
Background Neurofilament light (NFL) is a widely used biomarker for neurodegeneration. NFL is prone to oligomerisation, but available assays do not reveal the exact molecular nature of the protein variant measured. The objective of this study was to develop a homogeneous ELISA capable of quantifying oligomeric NFL (oNFL) in cerebrospinal fluid (CSF).

Methods A homogeneous ELISA, based on the same capture and detection antibody (NFL21), was developed and used to quantify oNFL in samples from patients with behavioural variant frontotemporal dementia (bvFTD, n=28), non-fluent variant primary progressive aphasia (nfvPPA, n=23), semantic variant PPA (svPPA, n=10), Alzheimer’s disease (AD, n=20) and healthy controls (n=29). The nature of NFL in CSF, and the recombinant protein calibrator, was also characterised by size exclusion chromatography (SEC).

Results CSF concentration of oNFL was significantly higher in nfvPPA (p<0.0001) and svPPA patients (p<0.05) compared with controls. CSF oNFL concentration was also significantly higher in nfvPPA compared with bvFTD (p<0.001) and AD (p<0.001) patients. SEC data showed a peak fraction compatible with a full-length dimer (~135 kDa) in the in-house calibrator. For CSF, the peak was found in a fraction of lower molecular weight (~53 kDa), suggesting dimerisation of NFL fragments.

Conclusions The homogeneous ELISA and SEC data suggest that most of the NFL in both the calibrator and human CSF is present as a dimer. In CSF, the dimer appears to be truncated. Further studies are needed to determine its precise molecular composition.

INTRODUCTION
Neurofilament light (NFL) is a 68 kDa type IV intermediate filament with structural functions in the neuronal cytoskeleton, mainly found in axons. Under physiological conditions, there is a basal release of NFL into the cerebrospinal fluid (CSF), which increases with age. However, after axonal damage in neurodegenerative conditions and other acute neurological conditions such as traumatic brain injury or stroke, its release greatly increases. Previous studies indicate NFL as a general marker of neurodegeneration, with its concentration in CSF and blood being increased in several neurological diseases including Alzheimer’s disease (AD), multiple sclerosis (MS), amyotrophic lateral sclerosis, Huntington’s disease and frontotemporal dementia (FTD). NFL is a well-established biomarker for neurodegeneration and several assays, either immunoassay or mass spectrometry (MS) based, have previously been developed intended to quantify it in body fluids. In a recent study, Budelier et al showed that, in CSF, no full-length NFL was found. Instead, it was detected by immuno-precipitation-MS analysis as various truncated species, shedding some light on the actual molecular state of this protein in CSF.

The hypothesis in this study is that NFL could be present in CSF as an oligomer. Our goal was to develop a homogeneous ELISA, using the same capture and detection antibody, to test this hypothesis and to quantify these oligomers in CSF. We also set out to examine the apparent size of NFL by size exclusion chromatography (SEC) in CSF and the calibrator used in the ELISA.

METHODS
Participants This study included FTD patients (n=61) from different variants, including behavioural variant FTD (bvFTD, n=28), non-fluent variant primary progressive aphasia (nfvPPA, n=23) and semantic variant primary progressive aphasia (svPPA, n=10). Among the FTD patients, 17 were mutation carriers affecting...
programgranulin (GRN), chromosome 9 open reading frame 72 (C9orf72) or microtubule-associated protein tau (MAPT) and 44 were sporadic cases from the University College London Genetic FTD Initiative (GENFI) and Longitudinal Investigation of FTD (LIFTD) studies. Assesment was performed based on standardised history and examination and the patients were classified as symptomatic if they met consensus diagnostic criteria.10 11 AD and examination and the patients were classified as symptomatic if they met consensus diagnostic criteria.10 11 AD

A 3-hour incubation period preceded the addition of biotinylated NfL21 detection antibody (1 μg/mL in assay buffer) with a 1-hour incubation. After that, enhanced streptavidin horseradish peroxidase (Enhanced Streptavidin-HRP, 4740 n, Kem En Tech) diluted 1:20 000 in assay buffer was added (100 μL/well) and incubated for 30 min. 3,3',5,5'-Tetramethylbenzidine (One Solution, 4380 A, Kem En Tech; 100 μL/well) was used as substrate. Finally, after 30 min incubation in the dark, the reaction was stopped with 0.2 M H2SO4 (100 μL/well), and the absorbance was measured at 450 nm (with 650 nm reference) using an ELISA plate reader (Sunrise, Tecan Trading AG).

Size exclusion chromatography
SEC was performed using an Etten LC system (Amersham Biosciences) equipped with a Superox 200 10/300 GL column (GE Healthcare) connected to a fraction collector (Frac-950, Amersham Biosciences). The column was equilibrated with a 10 mM ammonium bicarbonate buffer, which was also used in the isocratic separation. Injected sample volume was 500 μL and the flow rate 0.5 mL/min, while the fractions collected were 1 mL. Calibration of the column was performed using gel filtration markers (Sigma, MWGF70).

Statistical analysis
One-way analysis of variance with Tukey’s test correction was used to determine significant differences between groups, with p<0.05 considered statistically significant. The analysis was performed using GraphPad Prism software, V9.4.1.

RESULTS
CSF oNfL group differences
Two homogeneous setups with the in-house monoclonal antibodies were tested, namely NfL21+NfL21 and NfL23+NfL23. Both assays correlated strongly (r=0.9913, p<0.0001, online supplemental figure 1) with the only

Table 1 Demographic characteristics and CSF oligomeric NFL concentrations of the study subgroups

<table>
<thead>
<tr>
<th></th>
<th>bvFTD</th>
<th>nfvPPA</th>
<th>svPPA</th>
<th>AD</th>
<th>Controls</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>28</td>
<td>23</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>M/F</td>
<td>20/8</td>
<td>13/10</td>
<td>7/3</td>
<td>8/12</td>
<td>7/13</td>
<td></td>
</tr>
<tr>
<td>Age, years</td>
<td>62.6 (59.4–68.2)</td>
<td>66.3 (63.2–72.1)</td>
<td>65.2 (57.4–68.7)</td>
<td>66.9 (63.6–70.1)</td>
<td>70 (70–70)</td>
<td>0.0023</td>
</tr>
<tr>
<td>Disease duration, years</td>
<td>6.1 (9.4–3.5)</td>
<td>4.0 (5.4–2.7)</td>
<td>5.8 (7.7–1.8)</td>
<td>- *</td>
<td>NA</td>
<td>0.054</td>
</tr>
<tr>
<td>CSF oNfL, pg/mL</td>
<td>12554 (18169–6023)</td>
<td>22762 (34442–12452)</td>
<td>22890 (34447–14525)</td>
<td>8899 (15491–5525)</td>
<td>7150 (10889–5745)</td>
<td><0.0001†</td>
</tr>
</tbody>
</table>

Data are shown as median (IQR).

One-way ANOVA was applied to all study subgroups.

*Samples used for AD diagnostic (early-stage AD).

†bvFTD versus nfvPPA p<0.001, vs controls p<0.0001, svPPA vs controls p<0.05.

AD, Alzheimer's disease; ANOVA, analysis of variance; bvFTD, behavioural variant frontotemporal dementia; CSF, cerebrospinal fluid; NA, not applicable; NfL, neurofilament light; nfvPPA, non-fluent variant primary progressive aphasia; oNfL, oligomeric NfL; svPPA, semantic variant primary progressive aphasia.
difference being the slightly higher concentration obtained with the NfL21 setup, which was the assay selected for further testing.

To assess any differences in oNfL concentrations, samples representing several neurodegenerative diseases were included in a pilot study. All samples were randomised and analysed blinded, under the same conditions. Results showed significant increases in oNfL concentrations in nfvPPA ($2.90 \times 10^4 \pm 4.66 \times 10^3$ pg/mL, $p<0.0001$) and svPPA ($2.36 \times 10^4 \pm 3.24 \times 10^3$ pg/mL, $p<0.05$) compared with controls ($8.50 \times 10^3 \pm 8.22 \times 10^2$ pg/mL). nfvPPA also displayed increased oNfL compared with bvFTD ($1.35 \times 10^4 \pm 1.72 \times 10^3$ pg/mL, $p<0.001$) and AD ($1.30 \times 10^4 \pm 2.74 \times 10^3$ pg/mL, $p<0.01$). However, neither bvFTD nor AD had any significant differences compared with controls (figure 1A).

Size exclusion chromatography

SEC analysis of in-house calibrator showed a peak fraction (~135 kDa) that was consistent with full-length NfL dimers (figure 1B). Still, in CSF, the peak was found in fractions corresponding to lower molecular weight (~53 kDa), suggesting that oligomers in CSF are formed of truncated NfL (figure 1C).

DISCUSSION

This study shows that most NfL in CSF and the assay calibrator is a multimer (likely a dimer). None of the currently used NfL immunoassays give any information regarding the multimeric state of the protein. In the newly developed homogeneous assay, where the capture and detector antibodies are the same, the binding of the capture antibody to the target protein blocks the epitope for the detector antibody, thus nullifying the output signal if the captured protein is in monomeric form. However, if the captured protein is in oligomerised form, there will still be epitopes available for detector antibody-binding which consequently results in measurable absorbances.

CSF NfL concentration, measured using a standard ELISA, is increased in several neurodegenerative diseases, FTD in particular. CSF NfL even distinguishes FTD variants; in a recent meta-analysis, higher NfL levels were noted in semantic PPA patients when compared with bvFTD and non-fluent PPA patients. Here, we replicate most of these findings using an immunoassay selective for oNfL. In fact, our data suggest that most of the NfL signal in earlier studies may have been derived from oNfL rather than NfL monomers.
It is also important to emphasise that our assay may not detect all forms of oNFL, as oligomerisation might mask NFL21 epitopes in certain oligomeric species. However, from earlier studies, we are positive that this type of assay only detects oligomers of the target protein, and hence our results highlight this novel aspect of NFL as a biomarker. To examine the relative amount of oligomeric vs monomeric forms of NFL, as currently available assays cannot distinguish the two, an assay specific to monomeric NFL needs to be developed.

According to Budelier et al., NFL is present in the CSF as several different fragments, of which rod domain 2B fragments were identified and found to be correlating with results from the most widely used NFL ELISA (UmanDiagnostica). Our SEC results are in line with these findings, as in CSF, the peak fraction cannot correspond to full-length NFL, but rather oligomers of truncated NFL. Furthermore, we also observed that our calibrator eluted as a full-length dimer, confirming the oligomerised state of the protein. Previous studies, which also support our findings, state that the central part human NFL (detected by NFL21) has a strong propensity for self-assembly.

One question that remains to be answered is whether the oligomerisation occurs prior to or after release of the protein from the axon, and if oligomerisation is a part of the neurodegenerative process. We hypothesise that the protein is released as a dimer in both physiological and pathological conditions, given the strong propensity for oligomerisation of the coiled coil domain of NFL. To address this hypothesis, further research, including cell-based experiments and/or studies on acute axonal injury, is needed.

Nevertheless, the novel homogeneous ELISA described here, along with the SEC data, provide strong evidence of the presence of oNFL in CSF. In fact, the data suggest that most of NFL in calibrators and human CSF is a dimer; an important result if we are to standardise NFL assays by reference measurement procedures for which full characterisation of the target analyte is a prerequisite.

Author affiliations
1Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
2Dementia Research Center, Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, London, UK
3UK Dementia Research Institute at University College London, London, UK
4Neuropsychiatric Epidemiology Unit, the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
5Department of Psychiatry Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
6Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden

Contributors FJM and UA contributed to the study design, acquisition and interpretation of data, and drafted the manuscript. HK and HZ contributed to the study design, supervision, interpretation of data and drafted the manuscript. KK, IJS, AS-E, JD, AD, IS and SK provided the samples and revised the manuscript. BB and KB contributed to the study design and revised the manuscript.

Funding HZ is a Wallenberg Scholar supported by grants from the Swedish Research Council (#2018-02532), the European Union’s Horizon Europe research and innovation programme under grant agreement No 101053962, Swedish State Support for Clinical Research (#ALFGBG-71320), the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016802), the AD Strategic Fund and the Alzheimer’s Association (#ADSF-21-831376-C, #ADSF-21-831381-C, and #ADSF-21-831377-C), the Bluefield Project, the Olav Thon Foundation, the Erling-Persson Foundation, Stiftelsen for Gamba Tjanarrin och Hjärnfonden, Sweden (#FO2022-0270), the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 860197 (MIRADE), the European Union Joint Programme – Neurodegenerative Disease Research (JPND2021-00694), and the UK Dementia Research Institute at UCL (UKDRI-1003). KB is supported by the Swedish Research Council (#2017-00915 and #2022-00732) and Jan 1 2023 to Dec 31, 2026, the Alzheimer Drug Discovery Foundation (ADDF), USA (#201809-2016615), the Swedish Alzheimer Foundation (#AF-9300351, #AF-939721 and #AF-960270), Hjärnfonden, Sweden (#FO2017-0243 and #AL2022-0006), the Swedish state under the agreement between the Swedish government and the County Councils, the ALF-agreement (#ALFGBG-715986 and #ALFGBG-965240), the European Union Joint Program for Neurodegenerative Disorders (JPND2019-466-236), the National Institute of Health (NIH), USA, (grant #R01AG086398-01), the Alzheimer’s Association 2021 Zenith Award (ZEN-21-848495), and the Alzheimer’s Association 2022-2025 Grant (SG-23-1038904 OC). SK was financed by grants from the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-965923, ALFGBG-81392, ALF GBG-771071). The Alzheimerfonden (AF-842471, AF-737641, AF-929595, AF-939825). The Swedish Research Council (2019-02075), Psychiatriska Forskningsfond, Stiftelsen Demensfonden, Stiftelsen Hjalmar Svenssons Forskningsfond, Stiftelsen Wilhelm och Martina Lundgrens vetenskapsfond.

Competing interests HZ has served at scientific advisory boards and/or as a consultant for Abbvie, Acumen, Alector, ALZPath, Annexon, Apollis, Artery Therapeutics, AZTherapies, CogFx, Denali, Eisai, Novogen, Neo Nordisk, Passage Bio, Pirtheon Therapeutics, Red Abbey Labs, reMYND, Roche, Samumed, Siemens Healthineers, TripleT Therapeutics, and Wave, has given lectures in symposia sponsored by Cellectricron, Fujirebio, Alcezure, Biogen, and Roche, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Ventures Incubator Program (outside submitted work). KB has served as a consultant, at advisory boards, or at data monitoring committees for Abcam, Axon, BioArctic, Biogen, JOMOOD/Shimadzu. Julius Clinical, Lilly, MagQu, Novartis, Ono Pharma, Pharmatrophix, Prothena, Roche Diagnostics, and Siemens Healthineers, and is a co-founder of Brain Biomarker Solutions in Gothenburg AB (BBS), which is a part of the GU Incubator Program, outside the work presented in this paper. SK has served at scientific advisory boards and/or as consultant for Geras Solutions and Biogen.

Patient consent for publication Not applicable.

Ethics approval All participants provided written informed consent at enrolment including consent to publication. The London Queen Square Research Ethics Committee approved the University College London Genetic FTD Initiative (GENF; ID 14/0377) and Longitudinal Investigation of FTD (LIFTD; ID 15/0805). The H70 Clinical Study was approved by the Ethical Review Authority in Sweden (ID: 2019-04024) and the H70 Birth Cohort Study was approved by the Regional Ethical Review Board in Gothenburg, Sweden (ID: 869-13). The study complies with the Declaration of Helsinki.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as online supplemental information.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Francisco J. Meda http://orcid.org/0000-0002-3343-7351
Imogen J. Swift http://orcid.org/0000-0002-9097-0152
Aitana Sogorb-Esteve http://orcid.org/0000-0002-7869-8192
Jonathan D. Rohrer http://orcid.org/0000-0002-6155-8417
Henrik Zetterberg http://orcid.org/0000-0003-3930-4354

Protected by copyright.
REFERENCES

The scatter plot shows a strong positive correlation between oNfL_23 (pg/mL) and oNfL_21 (pg/mL) with a Pearson correlation coefficient of $r = 0.9913$ and a p-value of $p < 0.0001$. The data points form a nearly linear trend, indicating a highly significant linear relationship between the two variables.