
SUPPLEMENTARY INFORMATION 

Perceptual decision-making statistical power calculation 

In addition to an apriori power calculation to detect differences in metacognitive insight 

between the groups, we confirmed that this study would also be powered to detect 

differences in perception based on O’Donnell and colleagues [1], who found deficits on a 

similar two alternative forced choice task in two groups of HD gene carriers and controls. 

Since effect size was not reported, we estimated the effect size (Cohen’s f = 0.44, α = 0.05, 
two-tailed) based on reported means. This indicated that a total sample size of 54 was 

required to achieve power of 0.8. 

 

Behavioural Analysis 

To determine if ANOVA was appropriate, normality of the behavioural data was confirmed 

in MATLAB using the package normalitytest. This implements 10 independent normality 

tests (Kolmogorov-Smirnov test (Limiting form-Stephen's method, Marsaglia method), 

Lilliefors test, Anderson-Darling test, Cramer-Von Mises test, Shapiro-Wilk test, Shapiro-

Francia test, Jarque-Bera test, D’Agostino and Pearson test). Data from each group was 
separately tested for normality and considered to come from a normal distribution if zero 

tests indicated a significant deviation from normality. Homogeneity of variance was 

subsequently confirmed with Bartlett's test. All pairwise comparisons were adjusted with a 

Bonferroni correction method. Eta squared effect sizes (η2) were calculated in MATLAB from 

the sum of squares (SS) values in the ANOVA table output with the formula:  

 

η2 = SSeffect / SSeffect + SSerror  

 

Perceptual decision-making model 

The Hierarchical Drift Diffusion model (HDDM) simulates two-alternative forced choices as a 

noisy process of evidence accumulation through time, where sensory information is 

presented and the participant determines whether this provides evidence for either choice 

[2,3]. Group-level parameters are estimated based on behavioural data (response time and 

choice accuracy), under the assumption that participants within a group are similar, but not 

identical to each other. Parameter estimates are therefore constrained by group-level 

distributions. The rate of evidence accumulation is determined by the drift rate (v) 

parameter. Higher drift rates are related to faster and more accurate choices. A choice is 

made once the evidence reaches a decision boundary (a), which indicates the information 

threshold required to execute a decision and is related to response caution, with higher 

thresholds indicating slower, more accurate choices. A third parameter, bias (z) indicates a 

starting point likelihood towards one boundary. The final estimated parameter is non-

decision time (t), which captures decision-independent processing time (Supplementary 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Neurol Open

 doi: 10.1136/bmjno-2022-000268:e000268. 4 2022;BMJ Neurol Open, et al. Hewitt SRC



Figure 1). This analysis was implemented in the openly available HDDM python toolbox 

(v0.8.0). 

 

 

Supplementary Figure 1. The hierarchical drift diffusion model was used to understand a 

decision between two choices as a noisy process of evidence accumulation through time. It 

calculates four latent parameters: drift rate (v; also called evidence accumulation), 

threshold (a), bias (z) and non-decision time (t). Information accumulates towards one of 

two boundaries (separated by a) with an average drift rate (v). Bias indicates the starting 

point likelihood towards one boundary. The flat line which precedes evidence accumulation 

(t) represents non-decision time, which includes time to encode stimuli and execute a motor 

response. This schematic shows three representative examples and not real data. Figure 

adapted from [4].  

 

Model comparison and validation  

The best-fitting model to our data was determined by implementing several regression 

models within HDDM, in which responses were coded as correct and incorrect choices and 

drift rate (v) was modulated by stimulus strength on every trial (Supplementary Table 1). 

This is because we manipulated trial-by-trial stimulus strength and this is known to directly 

influence accumulation of evidence [3,5]. The bias parameter was not included because by 

design, the task controlled the likelihood of a decision being correct or incorrect.  
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To test our hypothesis that HD gene carriers would show impairments in perceptual 

decision-making, we tested for a decoupling between evidence accumulation rate and the 

evidence presented to them. To do so, Z-scores of stimulus strength were calculated within 

subjects. Therefore, each participant had their own Z-scores, reflecting the distribution of 

evidence (stimulus strength) they were presented with across the experiment. This allowed 

us to determine the relationship between drift rate in individuals carrying the HD gene, 

without the confounding influence of absolute differences in stimulus strength, which we 

explicitly manipulated in order to control perceptual task performance (Δ dots; Figure 2B). 

 

Model DIC BPIC  

v ~ stimulus strength 

 

26588.1 26592.1 

v ~ stimulus strength + group 26571.2 26577.2 

v ~ stimulus strength + group + stimulus strength*group 26573.3 26581.3 

v ~ stimulus strength + group + stimulus strength*group,  

α ~ group 

26392.9 26403 

v ~ stimulus strength + group + stimulus strength*group, 

α ~ group, 
t ~ group 

32486.2 32497.1 

 

Supplementary Table 1. DIC and BPIC values for each regression model implemented in HDDM. 

Values displayed are rounded to 1 decimal place. BPIC is calculated as (DIC + effective number of 

parameters (pD),  and therefore provides a (2-fold) stricter penalty for additional complexity. The 

best fitting model (bold) included effects of stimulus strength and group on drift rate (v), and their 

interaction, plus an additional effect of group on decision threshold (a). Stimulus strength was Z-

scored within participants.  

 

To address potential collinearity among parameters we fitted each model by estimating only 

group level posteriors for each regression coefficient, rather than for individual participants. 

Each regression model was sampled with 20,000 chains with the first 1000 chains discarded 

to estimate each parameter distribution. We defined the best-fitting model as that with the 

lowest DIC and BPIC (bold text, Supplementary Table 1). This model was characterised by a 

regression in which drift rate was modulated by group and stimulus strength, their 

interaction, and decision threshold was modulated by group: 

 

v ~ Zstimulus strength + group + (Zstimulus strength *group) 

 α ~ group 
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Prior to analysing the posterior distributions of the best fitting model, we confirmed the 

model’s reproducibility. We ran four, independent models in parallel to confirm the 

convergence of the resulting parameters using Rhat statistic. Rhat (or Gelman-Rubin) 

statistic is the ratio of the variance of each parameter when pooled together across the four 

models, to the within model variance. Therefore, Rhat quantifies the extent to which 

separate models reach different conclusions [6]. Model parameters demonstrated excellent 

convergence for all estimated parameters (mean: 1.00003, range: 0.99998 - 1.00015; 

Supplementary Table 2). Satisfied with this, we combined the chains of the four models and 

analysed the posterior distributions of the combined best-fitting model, which increased the 

sample size for the parameter estimates (80,000 chains, initial 4000 discarded). Of note, a 

model with a group term for non-decision time was a poorer fit to our data, which suggests 

that non-decision time did not differ between the groups. 

 

Supplementary Table 2. Mean, standard deviation and Gelman Rubin statistic (Rhat) of the HDDM 

parameters from four best-fitting models estimated independently. Rhat Values < 1.1 are considered 

to indicate acceptable convergence [6]. Rhat statistics indicate that the model parameters are highly 

reproducible. v=drift rate.  

 

A further validation of the model is that, based on the parameters, we are able to reproduce 

the behaviour of our participants. To confirm this, we performed a posterior predictive 

check in which we simulated response time distributions generated from the posterior 

distributions of the model parameters and compared them with observed response times. 

HDDM simulates 500 response time distributions for each participant independently and 

quantiles are the mean across all simulations. Taking all participants together, the model 

reproduced response times accurately. This was also the case for each group, and for both 

correct and incorrect responses (Supplementary Figure 2). For example, the model 

reproduces the (non-significant) trend toward faster response times with HD (See main text, 

Figure 2).  
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Supplementary Figure 2. Simulated response times reproduced the empirically observed 

response times across all groups and the entire distribution of responses. Group mean 

response times for each quantile are plotted as X and simulated response times from the 

posterior predictive of the HDDM as ellipses (capturing uncertainty). All observed means fall 

within the model’s posterior predictions. Quantiles are computed for each subject 

separately and averaged to yield group quantiles. Ellipse lengths are determined by the 

standard deviation of the posterior predictive distribution for that quantile and group. 

Ellipse widths are equal (0.1 SD).  

 

Posterior distribution analysis 

To assess if meaningful differences in parameter estimates existed between the groups, we 

compared the posterior distributions of each group directly and calculated the probability 

that the difference between the group distributions was in the opposite direction. This is 

similar to a one-tailed t-test (we calculated the probability, P, that the distribution with the 

greater mean was in fact smaller) and considered probability (P) < 0.025 (one-tailed) as 

statistically significant.  

At the group level (considering all trials equally), there was a significant increase in the drift 

rate parameter in the premanifest group (M = 0.614, SD = 0.021) compared with the control 

group (M = 0.561, SD = 0.016; P = 0.022). Drift rate in the early-manifest group did not 

significantly differ from the control group (M = 0.595, SD = 0.03, P = 0.16) or the premanifest 

group (P = 0.31; Supplementary Figure 3A). However, such overall group differences do not 

take into account differences in stimulus strength (Δ dots) between the groups which we 

explicitly manipulated based on participant’s accuracy (see main text, Figure 2). Consistent 

with our hypothesis, we found that the interaction effect of group*Zstimulus strength on drift 

rate revealed significant differences between both HD groups and the controls. In controls 

(M = 0.243, SD = 0.016), the effect of increasing Zstimulus strength on drift rate was significantly 

greater than in the premanifest group (M = -0.015, SD = 0.026; P < 0.001), and the early-

manifest group (M = 0, SD = 0.034; P < 0.001). In other words, compared with both HD 
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groups, healthy controls responded to relatively stronger evidence in favour of the correct 

decision by accumulating evidence more quickly. There was no difference between the 

premanifest and the early-manifest groups (P = 0.34; Supplementary Figure 3B), implying 

that this deficit emerges early in HD and is stable between disease stages.  

Comparing the decision threshold parameter, we found further significant differences 

between the groups. Patients with early-manifest HD adopted the lowest threshold (M = 

1.69, SD = 0.018), which was significantly reduced compared to the premanifest gene-

carriers (M = 1.89, SD = 0.016, P < 0.001) and the control group (M = 1.99, SD = 0.014, P < 

0.001). The threshold adopted by the premanifest group was also significantly reduced 

compared to the control group (P < 0.001;  Supplementary Figure 3C). In summary, decision 

thresholds were consistently narrowed with increased disease status.  
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Supplementary Figure 3. Posterior probability distributions from the best-fitting HDDM 

regression model. (a) Group level drift rates. (b) Significant interaction between drift rate 

and stimulus strength: the effect of increasing Zstimulus strength on drift rate in both premanifest 

HD and early-manifest HD was significantly reduced compared with the control group. (c) 

Significant reductions in decision threshold with greater disease status (c).  

* P < 0.025. *** P < 0.001.   
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Metacognition model 

One premanifest-HD participant had a high M-ratio which greatly exceeded the group mean 

(See main text, Figure 3). To confirm the effect that this participant had on the group 

estimate and therefore, our conclusions, we ran the HMeta-d analysis again with this 

participant excluded. The results were qualitatively and statistically equivalent. There was 

no difference between the posterior distributions derived from all premanifest HD 

participants (Main text, figure 3)  and from the sample excluding this participant (P = 0.59, 

95% HDI: -0.28 - +0.22). There also remained no significant differences in M-ratio between 

healthy controls and the reduced sample premanifest-HD (P = 0.118, 95% HDI: -0.09 - +0.34) 

or between the reduced sample premanifest HD and early-manifest HD (P = 0.25, 95% HDI: -

0.42 - +0.35). In other words, including this participant did not alter our conclusion that 

metacognitive insight into cognitive performance was intact in premanifest-HD. 

 

Supplementary References  

1  O’Donnell BF, Wilt MA, Hake AM, et al. Visual function in Huntington’s disease patients 
and presymptomatic gene carriers. Mov Disord 2003;18:1027–34. 

doi:10.1002/mds.10491 

2  Frank MJ, Gagne C, Nyhus E, et al. fMRI and EEG Predictors of Dynamic Decision 

Parameters during Human Reinforcement Learning. J Neurosci 2015;35:485–94. 

doi:10.1523/JNEUROSCI.2036-14.2015 

3  Gold JI, Shadlen MN. The neural basis of decision making. Annu Rev Neurosci 

2007;30:535–74. doi:10.1146/annurev.neuro.29.051605.113038 

4  Wiecki T, Sofer I, Frank M. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion 

Model in Python. Front Neuroinformatics 

2013;7.https://www.frontiersin.org/article/10.3389/fninf.2013.00014 (accessed 7 Mar 

2022). 

5  NSPN Consortium, Hauser TU, Allen M, et al. Metacognitive impairments extend 

perceptual decision making weaknesses in compulsivity. Sci Rep 2017;7:6614. 

doi:10.1038/s41598-017-06116-z 

6  Gelman A, Carlin J, Stern H, et al. Bayesian Data Analysis. Chapman and Hall/CRC 2013. 

doi:10.1201/b16018 

 

 

 

 

 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) BMJ Neurol Open

 doi: 10.1136/bmjno-2022-000268:e000268. 4 2022;BMJ Neurol Open, et al. Hewitt SRC


