Skip to main content

Advertisement

Log in

The pathological process underlying Alzheimer’s disease in individuals under thirty

  • Original Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Brains of 42 individuals between the ages of 4 and 29 were examined with antibodies (AT8, 4G8) and silver stains for the presence of intraneuronal and extracellular protein aggregates associated with Alzheimer’s disease. Thirty-eight of 42 (38/42) cases displayed abnormally phosphorylated tau protein (pretangle material) in nerve cells or in portions of their cellular processes, and 41/42 individuals showed no extracellular amyloid-β protein deposition or neuritic plaques—an individual with Down syndrome was the only exception. In 16/42 cases abnormal tau was found in the transentorhinal region, and in 3/42 cases this site was Gallyas-positive for isolated NFTs (NFT stage I). Of 26 cases that lacked abnormal tau in the transentorhinal region, 4 did not show pretangle material at subcortical sites. The remaining 22 of these same 26 cases, however, had subcortical lesions confined to non-thalamic nuclei with diffuse projections to the cerebral cortex, and, remarkably, in 19/22 individuals the pretangle material was confined to the noradrenergic coeruleus/subcoeruleus complex. Assuming the pretangle alterations are not transient and do not regress, these findings may indicate that the Alzheimer’s disease-related pathological process leading to neurofibrillary tangle formation does not begin in the cerebral cortex but, rather, in select subcortical nuclei, and it may start quite early, i.e., before puberty or in early young adulthood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alafuzoff I, Arzberger T, Al-Sarraj S et al (2008) Staging of neurofibrillary pathology in Alzheimer’s disease: a study for the Brain Net Europe Consortium. Brain Pathol 18:484–496

    PubMed  Google Scholar 

  2. Alonso AC, Li B, Grundke-Iqbal I, Iqbal K (2008) Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5:375–384

    Article  CAS  PubMed  Google Scholar 

  3. Amieva H, Le Goff M, Millet X et al (2008) Prodromal Alzheimer’s disease: successive emergence of clinical symptoms. Ann Neurol 64:492–498

    Article  PubMed  Google Scholar 

  4. Arnold SE, Hyman BT, Flory J, Damasio AR, van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  CAS  PubMed  Google Scholar 

  5. Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus–norepinephrine function: adaptive gain and optimal performance. Ann Rev Neurosci 28:403–450

    Article  CAS  PubMed  Google Scholar 

  6. Baker KG, Törk I, Hornung JP, Halasz P (1989) The human locus coeruleus complex: an immunohistochemical and three dimensional reconstruction study. Exp Brain Res 77:257–270

    Article  CAS  PubMed  Google Scholar 

  7. Bancher C, Brunner C, Lassmann H et al (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    Article  CAS  PubMed  Google Scholar 

  8. Beach TG, White CL 3rd, Hladik CL et al (2009) Olfactory bulb alpha-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol 117:169–174

    Article  CAS  PubMed  Google Scholar 

  9. Beach TG, Adler CH, Sue SI et al (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702

    Article  CAS  PubMed  Google Scholar 

  10. Benarroch EE (2009) The locus ceruleus norepinephrine system. Neurology 73:1699–1704

    Article  PubMed  Google Scholar 

  11. Bobinski M, Wegiel J, Tarnawski M et al (1998) Duration of neurofibrillary changes in the hippocampal pyramidal neurons. Brain Res 799:156–158

    Article  CAS  PubMed  Google Scholar 

  12. Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567

    Article  CAS  PubMed  Google Scholar 

  13. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    Article  CAS  PubMed  Google Scholar 

  14. Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1:213–216

    Article  CAS  PubMed  Google Scholar 

  15. Braak H, Braak E (1997) Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging 18:351–357

    Article  CAS  PubMed  Google Scholar 

  16. Braak H, Del Tredici K (2004) Alzheimer’s disease: intraneuronal alterations precede insoluble amyloid-β formation. Neurobiol Aging 25:713–718

    Article  PubMed  Google Scholar 

  17. Braak H, Braak E, Yilmazer D, Schultz C, Bohl J (1995) Age-related changes of the human cerebral cortex. In: Cruz-Sanchez FF, Ravid R, Cuzner ML (eds) Neuropathologic diagnostic criteria for brain banking. IOS Press, Amsterdam, pp 14–19

    Google Scholar 

  18. Braak H, Del Tredici K, Braak E (2003) Spectrum of pathology. In: Petersen R (ed) Mild cognitive impairment. Oxford University Press, New York, pp 149–189

    Google Scholar 

  19. Braak H, Del Tredici K, Rüb U, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–210

    Article  PubMed  Google Scholar 

  20. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K (2006) Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 112:389–404

    Article  PubMed  Google Scholar 

  21. Busch C, Bohl J, Ohm TG (1997) Spatial, temporal and numeric analysis of Alzheimer changes in the nucleus coeruleus. Neurobiol Aging 18:401–406

    Article  CAS  PubMed  Google Scholar 

  22. Cowan CM, Bossing T, Page A, Shepherd D, Mudher A (2010) Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathol 120:593–604

    Article  CAS  PubMed  Google Scholar 

  23. Davies DC, Brooks JW, Lewis DA (1993) Axonal loss from the olfactory tracts in Alzheimer’s disease. Neurobiol Aging 14:353–357

    Article  CAS  PubMed  Google Scholar 

  24. Delacourte A, Défossez A (1986) Alzheimer’s disease: tau proteins, the promoting factors of microtubule assembly, are major antigenic components of paired helical filaments. J Neurol Sci 76:173–186

    Article  CAS  PubMed  Google Scholar 

  25. Del Tredici K, Braak H (2008) Neurofibrillary changes of the Alzheimer type in very elderly individuals: neither inevitable nor benign. Commentary on “No disease in the brain of a 115-year-old woman”. Neurobiol Aging 29:1133–1136

    Article  PubMed  Google Scholar 

  26. Del Tredici K, Rüb U, de Vos RAI, Bohl JRE, Braak H (2002) Where does Parkinson pathology begin in the brain? J Neuropathol Exp Neurol 61:413–425

    PubMed  Google Scholar 

  27. Devanand DP, Tabert MH, Cuasay K et al (2010) Olfactory identification deficits and MCI in a multi-ethnic elderly community sample. Neurobiol Aging 31:1593–1600

    Article  CAS  PubMed  Google Scholar 

  28. Dickson DW (1997) Neurodegenerative diseases with cytoskeletal pathology: a biochemical classification. Ann Neurol 42:541–544

    Article  CAS  PubMed  Google Scholar 

  29. Dickson DW (1998) Aging in the central nervous system. In: Markesbery WR (ed) Neuropathology of dementing disorders. Arnold, London, pp 56–88

    Google Scholar 

  30. Dickson DW, Crystal HA, Mattiace LA et al (1991) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189

    Article  Google Scholar 

  31. Dickson DW, Uchikado H, Fujishiro H, Tsuboi Y (2010) Evidence in favor of Braak staging of Parkinson’s disease. Mov Disord 25(Suppl. 1):S78–S82

    Article  PubMed  Google Scholar 

  32. Dickson DW, Ahmed Z, Algom AA, Tsuboi Y, Josephs KA (2010) Neuropathology of variants of progressive supranuclear palsy. Curr Opin Neurol 23:394–400

    Article  PubMed  Google Scholar 

  33. Doty RL (2003) Odor perception in neurodegenerative disease. In: Doty RL (ed) Handbook of olfaction and gustation, 2nd edn. Marcel Dekker, New York, pp 479–501

    Google Scholar 

  34. Duyckaerts C, Hauw JJ (1997) Prevalence, incidence and duration of Braak’s stages in the general population: can we know? Neurobiol Aging 18:362–369

    Article  CAS  PubMed  Google Scholar 

  35. Frautschy SA, Cole GM (2010) Why pleiotropic interventions are needed for Alzheimer’s disease. Mol Neurobiol 41:392–409

    Article  CAS  PubMed  Google Scholar 

  36. German DC, White CL, Sparkman DR (1987) Alzheimer’s disease: neurofibrillary tangles in nuclei that project to the cerebral cortex. Neuroscience 21:305–312

    Article  CAS  PubMed  Google Scholar 

  37. German DC, Walker BS, Manaye K, Smith WK, Woodward DJ, North AJ (1988) The human locus coeruleus: computer reconstruction of cellular distribution. J Neurosci 8:193–203

    Google Scholar 

  38. German DC, Manaye KF, White CL 3rd (1992) Disease-specific patterns of locus coeruleus cell loss. Ann Neurol 32:667–676

    Article  CAS  PubMed  Google Scholar 

  39. Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  PubMed  Google Scholar 

  40. Goedert M, Jakes R, Crowther RA et al (1993) The abnormal phosphorylation of tau protein at Ser-202 in Alzheimer disease recapitulates phosphorylation during development. Proc Natl Acad Sci USA 90:5066–5070

    Article  CAS  PubMed  Google Scholar 

  41. Goedert M, Trojanowski JQ, Lee VMY (1997) The neurofibrillary pathology of Alzheimer’s disease. In: Rosenberg RN (ed) The molecular and genetic basis of neurological disease, 2nd edn. Butterworth-Heinemann, Boston, pp 613–627

    Google Scholar 

  42. Grinberg LT, Rüb U, Ferretti REL, Brazilian Brain Bank Study Group et al (2009) The dorsal raphe nucleus shows phospho-tau neurofibrillary changes before the transentorhinal region in Alzheimer’s disease. A precocious onset? Neuropathol Appl Neurobiol 35:406–416

    Article  CAS  PubMed  Google Scholar 

  43. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  CAS  PubMed  Google Scholar 

  44. Grudzien A, Shaw P, Weintraub S, Bigio E, Mash DC, Mesulam MM (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335

    Article  CAS  PubMed  Google Scholar 

  45. Haglund M, Sjöbeck M, Englund E (2006) Locus ceruleus degeneration is ubiquitous in Alzheimer’s disease: possible implications for diagnosis and treatment. Neuropathology 26:528–532

    Article  PubMed  Google Scholar 

  46. Hardy JA (1992) An anatomical cascade hypothesis for Alzheimer’s disease. Trends Neurosci 15:200–201

    Article  CAS  PubMed  Google Scholar 

  47. Hardy JA (2006) The amyloid hypothesis: history and alternatives. In: Jucker M, Beyreuther K, Haass C, Nitsch R, Christen Y (eds) Alzheimer: 100 years and beyond. Springer, Berlin, pp 151–156

    Chapter  Google Scholar 

  48. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  49. Hardy JA, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  50. Hawkes CH, Doty RL (2010) The neurology of olfaction. Cambridge University Press, Cambridge, pp 153–214

    Google Scholar 

  51. Hyman BT, Goméz-Isla T (1994) Alzheimer’s disease is a laminar, regional, and neural system specific disease, not a global brain disease. Neurobiol Aging 15:353–354

    Article  CAS  PubMed  Google Scholar 

  52. Hyman BT, Trojanowski JQ (1997) Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56:1095–1097

    Article  CAS  PubMed  Google Scholar 

  53. Iqbal K, Liu F, Gong CX, Alonso AC, Grundke-Iqbal I (2009) Mechanisms of tau-induced neurodegeneration. Acta Neuropathol 118:53–69

    Article  CAS  PubMed  Google Scholar 

  54. Jack CR, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  PubMed  Google Scholar 

  55. Klosen P, Maessen X, de Aguilar P (1993) PEG embedding for immunocytochemistry: application to the analysis of immunoreactivity loss during histological processing. J Histochem Cytochem 41:455–463

    CAS  PubMed  Google Scholar 

  56. Kok E, Haikonen S, Luoto T et al (2009) Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in middle age. Ann Neurol 65:650–657

    Article  CAS  PubMed  Google Scholar 

  57. Kovacech B, Skrabana R, Novak M (2010) Transition of tau protein from disordered to misordered in Alzheimer’s disease. Neurodegener Dis 7:24–27

    Article  CAS  PubMed  Google Scholar 

  58. Lee VM-Y, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Ann Rev Neurosci 24:1121–1159

    Article  CAS  PubMed  Google Scholar 

  59. Li B, Chohan MO, Grundke-Iqbal I, Iqbal K (2007) Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol 113:501–511

    Article  CAS  PubMed  Google Scholar 

  60. Li S, Shankar GM, Selkoe DJ (2010) How do soluble oligomers of amyloid beta-protein impair hippocampal synaptic plasticity? Front Cell Neurosci 4:5

    PubMed  Google Scholar 

  61. Mandelkow EM, Thiers E, Biernat J, Mandelkow E (2006) Influence of tau on neuronal traffic mechanisms. In: Jucker M, Beyreuther K, Haass C, Nitsch R, Christen Y (eds) Alzheimer: 100 years and beyond. Springer, Berlin, pp 345–354

    Chapter  Google Scholar 

  62. Mandelkow E, von Bergen M, Biernat J, Mandelkow EM (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17:83–90

    Article  CAS  PubMed  Google Scholar 

  63. Mattson MP (2006) Molecular and cellular pathways towards and away from Alzheimer’s disease. In: Jucker M, Beyreuther K, Haass C, Nitsch R, Christen Y (eds) Alzheimer: 100 years and beyond. Springer, Berlin, pp 371–378

    Chapter  Google Scholar 

  64. Mattsson N, Sävman K, Osterlundh G, Blennow K, Zetterberg H (2010) Converging molecular pathways in human and neural development and degeneration. Neurosci Res 66:330–332

    Article  CAS  PubMed  Google Scholar 

  65. McKee AC, Cantu RC, Nowinsky CJ, Hedley-White ET et al (2009) Chronic encephalopathy in athletes: progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68:709–735

    Article  PubMed  Google Scholar 

  66. Mesulam MM (1996) The systems-level organization of cholinergic innervation in the human cerebral cortex and its alterations in Alzheimer’s disease. Prog Brain Res 109:285–297

    Article  CAS  PubMed  Google Scholar 

  67. Mesulam MM, Shaw P, Mash D, Weintraub S (2004) Cholinergic nucleus basalis tauopathy emerges early in the aging-MCI-AD continuum. Ann Neurol 55:815–828

    Article  CAS  PubMed  Google Scholar 

  68. Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58:188–197

    Article  CAS  PubMed  Google Scholar 

  69. Mouton PR, Pakkenberg B, Gundersen HJ, Price DL (1994) Absolute number and size of pigmented locus coeruleus neurons in young and aged individuals. J Chem Neuroanat 7:185–190

    Article  CAS  PubMed  Google Scholar 

  70. Ohm TG, Braak H (1987) Olfactory bulb changes in Alzheimer’s disease. Acta Neuropathol 73:365–369

    Article  CAS  PubMed  Google Scholar 

  71. Omalu BI, Bailes J, Hammers JL, Fitzsimmons RP (2010) Chronic traumatic encephalopathy, suicides, and parasuicides in professional American athletes: the role of the forensic pathologist. Am J Forensic Med Pathol 31:130–132

    Article  PubMed  Google Scholar 

  72. Parvizi J, Van Hoesen GW, Damasio A (2001) The selective vulnerability of brainstem nuclei to Alzheimer’s disease. Ann Neurol 49:53–66

    Article  CAS  PubMed  Google Scholar 

  73. Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8:3–32

    Article  CAS  PubMed  Google Scholar 

  74. Pikkarainen M, Martikainen P, Alafuzoff I (2010) The effect of prolonged fixation time on immunohistochemical staining of common neurodegenerative disease markers. J Neuropathol Appl Neurol 69:40–52

    Article  CAS  Google Scholar 

  75. Pimplikar SW (2009) Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol 41:1261–1268

    Article  CAS  PubMed  Google Scholar 

  76. Sandmann-Keil D, Braak H, Okochi M, Haass C, Braak E (1999) Alpha-synuclein immunoreactive Lewy bodies and Lewy neuritis in Parkinson’s disease are detectable by an advanced silver-staining technique. Acta Neuropathol 98:461–464

    Article  CAS  PubMed  Google Scholar 

  77. Saper CB (1987) Diffuse cortical projection systems: anatomical organization and role in cortical function. In: Plum F (ed) Handbook of physiology, vol. 5, The nervous system. Am Physiol Soc, Bethesda, pp 169–210

  78. Saper CB (1990). Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic Press, New York, pp 1095–1013

  79. Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10:211–223

    Article  CAS  PubMed  Google Scholar 

  80. Sassin I, Schultz C, Thal DR et al (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol 100:259–269

    Article  CAS  PubMed  Google Scholar 

  81. Schönheit B, Zarski R, Ohm TG (2004) Spatial and temporal relationships between plaques and tangles in Alzheimer-pathology. Neurobiol Aging 25:697–711

    Article  PubMed  Google Scholar 

  82. Selkoe DJ (2003) Aging, amyloid, and Alzheimer’s disease: a perspective in honor of Carl Cotman. Neurochem Res 28:1705–1713

    Article  CAS  PubMed  Google Scholar 

  83. Simic G, Stanic G, Mladinov M, Jovanov-Milosevic N, Kostovic I, Hof PR (2009) Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol 35:532–554

    Article  CAS  PubMed  Google Scholar 

  84. Smith C, Graham DI, Murray LS, Nicoll JA (2003) Tau immunohistochemistry in acute brain injury. Neuropathol Appl Neurobiol 29:496–502

    Article  CAS  PubMed  Google Scholar 

  85. Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063

    Article  CAS  PubMed  Google Scholar 

  86. Takeda S, Hashimoto M, Mallory M et al (1998) Abnormal distribution of the non-Aβ component of Alzheimer’s disease and amyloid precursor/α-synuclein in Lewy body disease as revealed by proteinase K and formic acid pretreatment. Lab Investig 78:1169–1177

    CAS  PubMed  Google Scholar 

  87. Tanzi RE, Bertram I (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120:545–555

    Article  CAS  PubMed  Google Scholar 

  88. Terry RD (2000) Where in the brain does Alzheimer’s disease begin? Ann Neurol 47:421

    Article  CAS  PubMed  Google Scholar 

  89. Teter B, Ashford JW (2002) Neuroplasticity in Alzheimer’s disease. J Neurosci Res 70:402–437

    Article  CAS  PubMed  Google Scholar 

  90. Thal DR, Rüb U, Schultz C et al (2000) Sequence of Aβ-protein deposition in the human medial temporal lobe. J Neuropathol Exp Neurol 59:733–748

    CAS  PubMed  Google Scholar 

  91. Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58:1791–1800

    PubMed  Google Scholar 

  92. Tolnay M, Probst A (1999) Review: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol Appl Neurobiol 25:171–187

    Article  CAS  PubMed  Google Scholar 

  93. Trojanowski JQ, Lee VMY (2000) “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann NY Acad Sci 924:62–67

    Article  CAS  PubMed  Google Scholar 

  94. Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimer’s disease. Curr Alzheimer Res 5:342–345

    Article  CAS  PubMed  Google Scholar 

  95. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341

    Article  PubMed  Google Scholar 

  96. Zweig RM, Ross CA, Hedreen JC et al (1988) The neuropathology of aminergic nuclei in Alzheimer’s disease. Ann Neurol 24:233–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the German Research Council (Deutsche Forschungsgemeinschaft, DFG grant number TR 1000/1-1). Autopsy material was supplied by the Braak Collection (Goethe University Frankfurt). The skillful technical assistance of Ms. Siegrid Baumann, Ms. Verena Hofmann, Ms. Gabriele Ehmke, Ms. Irina Lundgrin (immunohistochemistry), and Mr. Stephan Mayer (graphics) from the University of Ulm is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Braak.

Additional information

For Professor Kurt Jellinger, in honor of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H., Del Tredici, K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol 121, 171–181 (2011). https://doi.org/10.1007/s00401-010-0789-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-010-0789-4

Keywords

Navigation