Skip to main content

Advertisement

Log in

The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

It has long been known that the majority of patients with multiple sclerosis (MS) display an intrathecal, polyspecific humoral immune response to a broad panel of neurotropic viruses. This response has measles virus, rubella virus and varicella zoster virus as its most frequent constituents and is thus referred to as the MRZ reaction (MRZR).

Objective

Re-evaluation of the specificity of MRZR as a marker of MS.

Methods

Structured review of the existing English-, German- and Spanish-language literature on MRZR testing, with evaluation of MRZR in a cohort of 43 unselected patients with MS and other neurological diseases as a proof of principle.

Results

A positive MRZ reaction, defined as a positive intrathecal response to at least two of the three viral agents, was found in 78% of MS patients but only in 3% of the controls (p < 0.00001), corresponding to specificity of 97%. Median antibody index values were significantly lower in non-MS patients (measles, p < 0.0001; rubella, p < 0.006; varicella zoster, p < 0.02). The 30 identified original studies on MRZR reported results from 1478 individual MRZR tests. A positive MRZR was reported for 458/724 (63.3%) tests in patients with MS but only for 19/754 (2.5%) tests in control patients (p < 0.000001), corresponding to cumulative specificity of 97.5% (CI 95% 96–98.4), cumulative sensitivity of 63.3% (CI 95% 59.6–66.8) (or 67.4% [CI 95% 63.5–71.1] in the adult MS subgroup), a positive likelihood ratio of 25.1 (CI 95% 16–39.3) and a negative likelihood ratio of 0.38 (CI 95% 0.34–0.41). Of particular note, MRZR was absent in 52/53 (98.1%) patients with neuromyelitis optica or MOG-IgG-positive encephalomyelitis, two important differential diagnoses of MS.

Conclusion

MRZR is the most specific laboratory marker of MS reported to date. If present, MRZR substantially increases the likelihood of the diagnosis of MS. Prospective and systematic studies on the diagnostic and prognostic impact of MRZR testing are highly warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ADEM:

Acute disseminated encephalomyelitis

AI:

Antibody index

APL:

Antiphospholipid syndrome

CI:

Confidence interval

CNS:

Central nervous system

EBV:

Epstein–Barr virus

HIV:

Human immunodeficiency virus

HSV:

Herpes simplex virus

HTLV-1:

Human T-lymphotropic virus 1

IgG:

Immunoglobulin G

M:

Measles virus

MRZR:

Measles virus, rubella virus, and varicella zoster virus reaction

MS:

Multiple sclerosis

NB:

Neuroborreliosis

NDT:

Not detectable

NIND:

Non-inflammatory neurological disorders

nLR:

Negative likelihood ratio

NMO:

Neuromyelitis optica

OIND/CNS:

Other inflammatory neurological disorders of the CNS

OND:

Other neurological disorders

RD/CNS:

Rheumatic disorders with CNS involvement

pLR:

Positive likelihood ratio

PND:

Paraneoplastic neurological disorders

Q:

Quotient

R:

Rubella virus

SLE:

Systemic lupus erythematosus

Z or VZV:

Varicella zoster virus

References

  1. Weichsler B, Davatchi F, Mizushima Y, Hamza M, Dilsen N, Kansu E, Yazici H et al (1990) Criteria for diagnosis of Behcet’s disease. International Study Group for Behcet’s Disease. Lancet 335:1078–1080

  2. Adams JM, Imagawa DT (1962) Measles antibodies in multiple sclerosis. Proc Soc Exp Biol Med 111:562–566

    Article  CAS  PubMed  Google Scholar 

  3. Andersson M, Alvarez-Cermeno J, Bernardi G, Cogato I, Fredman P, Frederiksen J, Fredrikson S, Gallo P, Grimaldi LM, Gronning M et al (1994) Cerebrospinal fluid in the diagnosis of multiple sclerosis: a consensus report. J Neurol Neurosurg Psychiatry 57:897–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bednarova J, Stourac P, Adam P (2005) Relevance of immunological variables in neuroborreliosis and multiple sclerosis. Acta Neurol Scand 112:97–102

    Article  CAS  PubMed  Google Scholar 

  5. Brecht I, Weissbrich B, Braun J, Toyka KV, Weishaupt A, Buttmann M (2012) Intrathecal, polyspecific antiviral immune response in oligoclonal band negative multiple sclerosis. PLoS One 7:e40431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brettschneider J, Tumani H, Kiechle U, Muche R, Richards G, Lehmensiek V, Ludolph AC, Otto M (2009) IgG antibodies against measles, rubella, and varicella zoster virus predict conversion to multiple sclerosis in clinically isolated syndrome. PLoS One 4:e7638

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chu AB, Sever JL, Madden DL, Iivanainen M, Leon M, Wallen W, Brooks BR, Lee YJ, Houff S (1983) Oligoclonal IgG bands in cerebrospinal fluid in various neurological diseases. Ann Neurol 13:434–439

    Article  CAS  PubMed  Google Scholar 

  8. Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernandez O, Hartung H, Seeldrayers P, Sorensen PS, Rovaris M, Martinelli V, Hommes OR (2001) Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet 357:1576–1582

    Article  CAS  PubMed  Google Scholar 

  9. Comi G, Martinelli V, Rodegher M, Moiola L, Bajenaru O, Carra A, Elovaara I, Fazekas F, Hartung HP, Hillert J, King J, Komoly S, Lubetzki C, Montalban X, Myhr KM, Ravnborg M, Rieckmann P, Wynn D, Young C, Filippi M (2009) Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): a randomised, double-blind, placebo-controlled trial. Lancet 374:1503–1511

    Article  CAS  PubMed  Google Scholar 

  10. Correale J, de los Milagros Bassani Molinas M (2002) Oligoclonal bands and antibody responses in multiple sclerosis. J Neurol 249:375–389

  11. Deeks JJ, Altman DG (2004) Diagnostic tests 4: likelihood ratios. BMJ 329:168–169

    Article  PubMed  PubMed Central  Google Scholar 

  12. Denne C, Kleines M, Dieckhofer A, Ritter K, Scheithauer S, Merz U, Hausler M (2007) Intrathecal synthesis of anti-viral antibodies in pediatric patients. Eur J Paediatr Neurol 11:29–34

    Article  PubMed  Google Scholar 

  13. Dennin RH, Herb E (1989) Immunological diagnosis in viral infections of the central nervous system: course of antibody titres against homo- and heterologous viruses. Med Microbiol Immunol 178:255–268

    Article  CAS  PubMed  Google Scholar 

  14. Derfuss T, Gurkov R, Then Bergh F, Goebels N, Hartmann M, Barz C, Wilske B, Autenrieth I, Wick M, Hohlfeld R, Meinl E (2001) Intrathecal antibody production against Chlamydia pneumoniae in multiple sclerosis is part of a polyspecific immune response. Brain 124:1325–1335

    Article  CAS  PubMed  Google Scholar 

  15. Derfuss T, Hohlfeld R, Meinl E (2005) Intrathecal antibody (IgG) production against human herpesvirus type 6 occurs in about 20% of multiple sclerosis patients and might be linked to a polyspecific B-cell response. J Neurol 252:968–971

    Article  CAS  PubMed  Google Scholar 

  16. Dobson R, Ramagopalan S, Davis A, Giovannoni G (2013) Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry 84:909–914

    Article  PubMed  Google Scholar 

  17. Felgenhauer K, Reiber H (1992) The diagnostic significance of antibody specificity indices in multiple sclerosis and herpes virus induced diseases of the nervous system. Clin Investig 70:28–37

    Article  CAS  PubMed  Google Scholar 

  18. Felgenhauer K, Schadlich HJ, Nekic M, Ackermann R (1985) Cerebrospinal fluid virus antibodies. A diagnostic indicator for multiple sclerosis? J Neurol Sci 71:291–299

    Article  CAS  PubMed  Google Scholar 

  19. Franciotta D, Salvetti M, Lolli F, Serafini B, Aloisi F (2008) B cells and multiple sclerosis. Lancet Neurol 7:852–858

    Article  CAS  PubMed  Google Scholar 

  20. Frederiksen JL, Sindic CJ (1998) Intrathecal synthesis of virus-specific oligoclonal IgG, and of free kappa and free lambda oligoclonal bands in acute monosymptomatic optic neuritis. Comparison with brain MRI. Mult Scler 4:22–26

    Article  CAS  PubMed  Google Scholar 

  21. Gahr M, Lauda F, Wigand ME, Connemann BJ, Rosenbohm A, Tumani H, Reindl M, Uzelac Z, Lewerenz J (2015) Periventricular white matter lesion and incomplete MRZ reaction in a male patient with anti-N-methyl-d-aspartate receptor encephalitis presenting with dysphoric mania. BMJ Case Rep. doi:10.1136/bcr-2014-209075

  22. Godec MS, Asher DM, Murray RS, Shin ML, Greenham LW, Gibbs CJ Jr, Gajdusek DC (1992) Absence of measles, mumps, and rubella viral genomic sequences from multiple sclerosis brain tissue by polymerase chain reaction. Ann Neurol 32:401–404

    Article  CAS  PubMed  Google Scholar 

  23. Graef IT, Henze T, Reiber H (1994) Polyspecific immune reaction in the central nervous system in autoimmune diseases with CNS involvement. Z Arztl Fortbild 88:587–591

    CAS  Google Scholar 

  24. Hochberg MC (1997) Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40:1725

    Article  CAS  PubMed  Google Scholar 

  25. Hottenrott T, Dersch R, Berger B, Rauer S, Eckenweiler M, Huzly D, Stich O (2015) The intrathecal, polyspecific antiviral immune response in neurosarcoidosis, acute disseminated encephalomyelitis and autoimmune encephalitis compared to multiple sclerosis in a tertiary hospital cohort. Fluids Barriers CNS 12:27

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hyden D, Roberg M, Forsberg P, Fridell E, Fryden A, Linde A, Odkvist L (1993) Acute “idiopathic” peripheral facial palsy: clinical, serological, and cerebrospinal fluid findings and effects of corticosteroids. Am J Otolaryngol 14:179–186

    Article  CAS  PubMed  Google Scholar 

  27. Jacobi C, Arlt S, Reiber H, Westner I, Kretzschmar HA, Poser S, Zerr I (2005) Immunoglobulins and virus-specific antibodies in patients with Creutzfeldt-Jakob disease. Acta Neurol Scand 111:185–190

    Article  CAS  PubMed  Google Scholar 

  28. Jacobi C, Lange P, Reiber H (2007) Quantitation of intrathecal antibodies in cerebrospinal fluid of subacute sclerosing panencephalitis, herpes simplex encephalitis and multiple sclerosis: discrimination between microorganism-driven and polyspecific immune response. J Neuroimmunol 187:139–146

    Article  CAS  PubMed  Google Scholar 

  29. Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, Simonian NA, Slasor PJ, Sandrock AW (2000) Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med 343:898–904

    Article  CAS  PubMed  Google Scholar 

  30. Jarius S, Eichhorn P, Jacobi C, Wildemann B, Wick M, Voltz R (2009) The intrathecal, polyspecific antiviral immune response: specific for MS or a general marker of CNS autoimmunity? J Neurol Sci 280:98–100

    Article  CAS  PubMed  Google Scholar 

  31. Jarius S, Eichhorn P, Wildemann B, Wick M (2012) Usefulness of antibody index assessment in cerebrospinal fluid from patients negative for total-IgG oligoclonal bands. Fluids Barriers CNS 9:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jarius S, Franciotta D, Bergamaschi R, Rauer S, Wandinger KP, Petereit HF, Maurer M, Tumani H, Vincent A, Eichhorn P, Wildemann B, Wick M, Voltz R (2008) Polyspecific, antiviral immune response distinguishes multiple sclerosis and neuromyelitis optica. J Neurol Neurosurg Psychiatry 79:1134–1136

    Article  CAS  PubMed  Google Scholar 

  33. Jarius S, Franciotta D, Marchioni E, Hohlfeld R, Wildemann B, Voltz R (2006) Intrathecal polyspecific immune response against neurotropic viruses discriminates between multiple sclerosis and acute demyelinating encephalomyelitis. J Neurol 253:486

  34. Jarius S, Kleiter I, Ruprecht K, Asgari N, Pitarokoili K, Borisow N, Hummert MW, Trebst C, Pache F, Winkelmann A, Beume LA, Ringelstein M, Stich O, Aktas O, Korporal-Kuhnke M, Schwarz A, Lukas C, Haas J, Fechner K, Buttmann M, Bellmann-Strobl J, Zimmermann H, Brandt AU, Franciotta D, Schanda K, Paul F, Reindl M, Wildemann B (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 3: Brainstem involvement - frequency, presentation and outcome. J Neuroinflammation 13:281

  35. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F, Stich O, Beume LA, Hummert MW, Ringelstein M, Trebst C, Winkelmann A, Schwarz A, Buttmann M, Zimmermann H, Kuchling J, Franciotta D, Capobianco M, Siebert E, Lukas C, Korporal-Kuhnke M, Haas J, Fechner K, Brandt AU, Schanda K, Aktas O, Paul F, Reindl M, Wildemann B (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 13:280

  36. Jarius S, Ruprecht K, Kleiter I, Borisow N, Asgari N, Pitarokoili K, Pache F, Stich O, Beume LA, Hummert MW, Trebst C, Ringelstein M, Aktas O, Winkelmann A, Buttmann M, Schwarz A, Zimmermann H, Brandt AU, Franciotta D, Capobianco M, Kuchling J, Haas J, Korporal-Kuhnke M, Lillevang ST, Fechner K, Schanda K, Paul F, Wildemann B, Reindl M (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 1: Frequency, syndrome specificity, influence of disease activity, long-term course, association with AQP4-IgG, and origin. J Neuroinflammation 13:279

  37. Jarius S, Ruprecht K, Wildemann B, Kuempfel T, Ringelstein M, Geis C, Kleiter I, Kleinschnitz C, Berthele A, Brettschneider J, Hellwig K, Hemmer B, Linker RA, Lauda F, Mayer CA, Tumani H, Melms A, Trebst C, Stangel M, Marziniak M, Hoffmann F, Schippling S, Faiss JH, Neuhaus O, Ettrich B, Zentner C, Guthke K, Hofstadt-van Oy U, Reuss R, Pellkofer H, Ziemann U, Kern P, Wandinger KP, Then Bergh F, Boettcher T, Langel S, Liebetrau M, Rommer PS, Niehaus S, Munch C, Winkelmann A, Zettl UK, Metz I, Veauthier C, Sieb JP, Wilke C, Hartung HP, Aktas O, Paul F (2012) Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients. J Neuroinflammation 9:14

    Article  CAS  Google Scholar 

  38. Jarius S, Stich O, Rasiah C, Voltz R, Rauer S (2008) Qualitative evidence of Ri specific IgG-synthesis in the cerebrospinal fluid from patients with paraneoplastic neurological syndromes. J Neurol Sci 268:65–68

    Article  CAS  PubMed  Google Scholar 

  39. Jarius S, Stich O, Speck J, Rasiah C, Wildemann B, Meinck HM, Rauer S (2010) Qualitative and quantitative evidence of anti-glutamic acid decarboxylase-specific intrathecal antibody synthesis in patients with stiff person syndrome. J Neuroimmunol 229:219–224

  40. Kappos L, Comi G, De Stefano N, Freedman M, Barkhof F, Polman C, Uitdehaag B, Casset-Semanaz F, Hennessy B, Rocak S, Stubinski B (2011) Efficacy of two dosing frequencies of subcutaneous interferon beta-1a on risk of conversion from a first demyelinating event to multiple sclerosis: results of a phase III, randomised, double-blind, placebo-controlled, multi-centre trial (REFLEX). J Neurol 258:264

    Google Scholar 

  41. Kappos L, Freedman MS, Polman CH, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Radu EW, Bauer L, Dahms S, Lanius V, Pohl C, Sandbrink R (2007) Effect of early versus delayed interferon beta-1b treatment on disability after a first clinical event suggestive of multiple sclerosis: a 3-year follow-up analysis of the BENEFIT study. Lancet 370:389–397

    Article  CAS  PubMed  Google Scholar 

  42. Kappos L, Polman CH, Freedman MS, Edan G, Hartung HP, Miller DH, Montalban X, Barkhof F, Bauer L, Jakobs P, Pohl C, Sandbrink R (2006) Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 67:1242–1249

    Article  CAS  PubMed  Google Scholar 

  43. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G, Ransohoff RM, Trebst C, Weinshenker B, Wingerchuk D, Parisi JE, Lassmann H (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125:1450–1461

    Article  PubMed  Google Scholar 

  44. Mader S, Gredler V, Schanda K, Rostasy K, Dujmovic I, Pfaller K, Lutterotti A, Jarius S, Di Pauli F, Kuenz B, Ehling R, Hegen H, Deisenhammer F, Aboul-Enein F, Storch MK, Koson P, Drulovic J, Kristoferitsch W, Berger T, Reindl M (2011) Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders. J Neuroinflammation 8:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mathiesen T, von Holst H, Fredrikson S, Wirsen G, Hederstedt B, Norrby E, Sundqvist VA, Wahren B (1989) Total, anti-viral, and anti-myelin IgG subclass reactivity in inflammatory diseases of the central nervous system. J Neurol 236:238–242

    Article  CAS  PubMed  Google Scholar 

  46. McLean BN, Luxton RW, Thompson EJ (1990) A study of immunoglobulin G in the cerebrospinal fluid of 1007 patients with suspected neurological disease using isoelectric focusing and the Log IgG-Index. A comparison and diagnostic applications. Brain 113(Pt 5):1269–1289

    Article  PubMed  Google Scholar 

  47. Meinl E, Krumbholz M, Hohlfeld R (2006) B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol 59:880–892

    Article  CAS  PubMed  Google Scholar 

  48. Miller DH, Weinshenker BG, Filippi M, Banwell BL, Cohen JA, Freedman MS, Galetta SL, Hutchinson M, Johnson RT, Kappos L, Kira J, Lublin FD, McFarland HF, Montalban X, Panitch H, Richert JR, Reingold SC, Polman CH (2008) Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler 14:1157–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Norrby E, Link H, Olsson JE, Panelius M, Salmi A, Vandvik B (1974) Comparison of antibodies against different viruses in cerebrospinal fluid and serum samples from patients with multiple sclerosis. Infect Immun 10:688–694

  50. Otto C, Oltmann A, Stein A, Frenzel K, Schroeter J, Habbel P, Gartner B, Hofmann J, Ruprecht K (2011) Intrathecal EBV antibodies are part of the polyspecific immune response in multiple sclerosis. Neurology 76:1316–1321

    Article  CAS  PubMed  Google Scholar 

  51. Pache F, Zimmermann H, Mikolajczak J, Schumacher S, Lacheta A, Oertel FC, Bellmann-Strobl J, Jarius S, Wildemann B, Reindl M, Waldman A, Soelberg K, Asgari N, Ringelstein M, Aktas O, Gross N, Buttmann M, Ach T, Ruprecht K, Paul F, Brandt AU (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients. J Neuroinflammation 13:282

  52. Petereit HF, Reske D (2005) Expansion of antibody reactivity in the cerebrospinal fluid of multiple sclerosis patients - follow-up and clinical implications. Cerebrospinal Fluid Res 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  53. Petereit HF, Sindern E, Wick M (2007) [CSF diagnostics. Guidelines and catalogue of methods of the German Society for Cerebrospinal Fluid Diagnostics and Clinical Neurochemistry]. Springer, Heidelberg

  54. Pohl D, Rostasy K, Jacobi C, Lange P, Nau R, Krone B, Hanefeld F (2010) Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis. J Neurol 257:212–216

    Article  CAS  PubMed  Google Scholar 

  55. Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, Lublin FD, Metz LM, McFarland HF, O’Connor PW, Sandberg-Wollheim M, Thompson AJ, Weinshenker BG, Wolinsky JS (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  56. Puccioni-Sohler M, Kitze B, Felgenhauer K, Graef IT, Lange P, Novis S, Reiber H, Vaz B (1995) The value of CSF analysis for the differential diagnosis of HTLV-I associated myelopathy and multiple sclerosis. Arq Neuropsiquiatr 53:760–765

    Article  CAS  PubMed  Google Scholar 

  57. Reiber H (1998) Cerebrospinal fluid–physiology, analysis and interpretation of protein patterns for diagnosis of neurological diseases. Mult Scler 4:99–107

    Article  CAS  PubMed  Google Scholar 

  58. Reiber H, Lange P (1991) Quantification of virus-specific antibodies in cerebrospinal fluid and serum: sensitive and specific detection of antibody synthesis in brain. Clin Chem 37:1153–1160

    CAS  PubMed  Google Scholar 

  59. Reiber H, Teut M, Pohl D, Rostasy KM, Hanefeld F (2009) Paediatric and adult multiple sclerosis: age-related differences and time course of the neuroimmunological response in cerebrospinal fluid. Mult Scler 15:1466–1480

    Article  CAS  PubMed  Google Scholar 

  60. Reiber H, Ungefehr S, Jacobi C (1998) The intrathecal, polyspecific and oligoclonal immune response in multiple sclerosis. Mult Scler 4:111–117

    Article  CAS  PubMed  Google Scholar 

  61. Robinson-Agramonte M, Reiber H, Cabrera-Gomez JA, Galvizu R (2007) Intrathecal polyspecific immune response to neurotropic viruses in multiple sclerosis: a comparative report from Cuban patients. Acta Neurol Scand 115:312–318

    Article  CAS  PubMed  Google Scholar 

  62. Rosche B, Laurent S, Conradi S, Hofmann J, Ruprecht K, Harms L (2012) Measles IgG antibody index correlates with t2 lesion load on MRI in patients with early multiple sclerosis. PLoS One 7:e28094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rostasy K, Reiber H, Pohl D, Lange P, Ohlenbusch A, Eiffert H, Maass M, Hanefeld F (2003) Chlamydia pneumoniae in children with MS: frequency and quantity of intrathecal antibodies. Neurology 61:125–128

    Article  CAS  PubMed  Google Scholar 

  64. Rostrom B (1982) Antibodies against viruses and structural brain components in oligoclonal IgG obtained from multiple sclerosis brain. J Neurol 226:255–263

    Article  CAS  PubMed  Google Scholar 

  65. Schubert J, Weissbrich B (2007) Detection of virus-specific intrathecally synthesised immunoglobulin G with a fully automated enzyme immunoassay system. BMC Neurol 7:12

    Article  PubMed  PubMed Central  Google Scholar 

  66. Schultze D, Weder B, Cassinotti P, Vitek L, Krausse K, Fierz W (2004) Diagnostic significance of intrathecally produced herpes simplex and varizella-zoster virus-specific antibodies in central nervous system infections. Swiss Med Wkly 134:700–704

    PubMed  Google Scholar 

  67. Sindic CJ, Monteyne P, Laterre EC (1994) The intrathecal synthesis of virus-specific oligoclonal IgG in multiple sclerosis. J Neuroimmunol 54:75–80

    Article  CAS  PubMed  Google Scholar 

  68. Stich O, Graus F, Rasiah C, Rauer S (2003) Qualitative evidence of anti-Yo-specific intrathecal antibody synthesis in patients with paraneoplastic cerebellar degeneration. J Neuroimmunol 141:165–169

    Article  CAS  PubMed  Google Scholar 

  69. Stich O, Kluge J, Speck J, Rauer S (2009) Detection of virus-specific (measles, rubella, zoster) oligoclonal IgG-bands in CSF from multiple sclerosis patients without oligoclonal bands of total IgG. Multiple Scler 15:S86

    Article  Google Scholar 

  70. Stich O, Kluge J, Speck J, Rauer S (2015) Oligoclonal restriction of antiviral immunoreaction in oligoclonal band-negative MS patients. Acta Neurol Scand 131:381–388

    Article  CAS  PubMed  Google Scholar 

  71. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–1277

    Article  CAS  PubMed  Google Scholar 

  72. Tumani H, Deisenhammer F, Giovannoni G, Gold R, Hartung HP, Hemmer B, Hohlfeld R, Otto M, Stangel M, Wildemann B, Zettl UK (2011) Revised McDonald criteria: the persisting importance of cerebrospinal fluid analysis. Ann Neurol 70:520 (author reply 521)

  73. Tumani H, Tourtellotte WW, Peter JB, Felgenhauer K (1998) Acute optic neuritis: combined immunological markers and magnetic resonance imaging predict subsequent development of multiple sclerosis. The Optic Neuritis Study Group. J Neurol Sci 155:44–49

    Article  CAS  PubMed  Google Scholar 

  74. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG, International Panel for NMOD (2015) International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology 85:177–189

  75. Wurster U, Stachan R, Windhagen A, Petereit HF, Leweke FM (2006) Reference values for standard cerebrospinal fluid examinations in multiple sclerosis. Results from 99 healthy volunteers. Mult Scler 12:P248

    Google Scholar 

Download references

Acknowledgements

This work was supported by a research fellowship from the European Committee for Treatment and Research in Multiple Sclerosis (ECTRIMS) to SJ, by a research fellowship from the European Neurological Society (ENS) to SJ, and by research grants from Bayer Healthcare, from the Dietmar Hopp Foundation, and from MerckSerono to BW. We are grateful to Mrs D. Menzel, Mrs R. Herbst, Mrs M. Hoehne and Mrs H. Pahl, Department of Clinical Chemistry, Ludwig Maximilian University, Munich, Germany, and to Mrs Annemarie Eschlbeck, Department of Neurology, University of Heidelberg, Germany, for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jarius.

Ethics declarations

Conflicts of interest

The authors report no conflicts of interest.

Ethical standards

The study was approved by the institutional review board of the University of Heidelberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarius, S., Eichhorn, P., Franciotta, D. et al. The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J Neurol 264, 453–466 (2017). https://doi.org/10.1007/s00415-016-8360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8360-4

Keywords

Navigation