Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of striatal acetylcholine concentration by dopamine receptors

Abstract

IMPAIRMENT of the coordinated activities of cholinergic and dopaminergic neurones in the brain has been implicated in the pathophysiology of Huntington's chorea, drug-induced dyskinesias, Parkinsonism, schizophrenia and manic-depressive psychosis1–6. Physostigmine, a drug which increases brain acetylcholine by inhibiting acetylcholinesterase, has been reported to improve the neurological status of patients with Huntington's chorea, tardive dyskinesias and L-dopa-induced dyskinesia7–9. The hyperkinetic involuntary movements in these disorders are thought to be related to a denervation hypersensitivity of dopamine receptors in the striatum10. On the other hand, in diseases with decreased dopaminergic activity, such as idiopathic and phenothiazine-induced Parkinsonism, intravenous injection of small doses of physostigmine exacerbated rigidity and tremors11,12. A similar aggravation of Parkinsonian-like symptoms by physostigmine can be observed in rats pretreated with phenothiazines or reserpine and in dogs pretreated with intracisternal 6-hydroxydopamine13,14. L-Dopa blocks the adverse neurological effects of physostigmine in Parkinsonian patients and in animals pretreated with reserpine or 6-hydroxydopamine11–14. These observations suggest that the response to central cholinergic stimulation depends on the functional activity of inhibitory dopamine receptors in the striatum. The diminished striatal dopamine receptor stimulation in Parkinsonism15 may secondarily produce cholinergic hyper-activity in the striatum; the converse may exist in dyskinetic and choreiform disorders. Striatal dopamine receptors could regulate cholinergic activity by modulating intrastriatal acetylcholine synthesis and release by cholinergic neurones. We have now tested this hypothesis by investigating the effect of dopamine receptor agonists and antagonists on striatal acetylcholine concentration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Duvoisin, R. C., Arch. Neurol., 17, 124–136 (1967).

    Article  CAS  Google Scholar 

  2. Davis, J. M., Int. Rev. Neurol., 12, 145–175 (1970).

    Article  CAS  Google Scholar 

  3. Barbeau, A., Mars, H., and Gillo-Joffroy, L., Recent advances in Parkinson's disease (edit. by McDowell, F. H., and Markham, C. H.), 203–237 (Davis, Philadelphia, 1971).

    Google Scholar 

  4. Klawans, H. L., and Rubovits, R., Neurology, 22, 107–113 (1972).

    Article  Google Scholar 

  5. Janowsky, D. S., El-Yousef, M. K., and Davis, J. M., Arch. gen. Psychiat., 28, 542–547 (1973).

    Article  CAS  Google Scholar 

  6. Janowsky, D. S., El-Yousef, M. K., and Davis, J. M., Arch. gen. Psychiat., 28, 185–190 (1973).

    Article  CAS  Google Scholar 

  7. Aquilonius, J. M., and Sjostrom, R., Life Sci., 10, 405–414 (1971).

    Article  CAS  Google Scholar 

  8. Fann, W. E., Lake, C. R., Gerber, C. J., and McKensie, G. M., Pharmacologist, 15, 182 (1973).

    Google Scholar 

  9. Tarsy, D., Leopold, N., and Sax, D. S., Neurology, 24, 28–33 (1974).

    Article  CAS  Google Scholar 

  10. Klawans, H. L., Eur. J. Neurol., 4, 148–163 (1970).

    Article  Google Scholar 

  11. Weintraub, M. L., and Van Woert, M. H., New Engl. J. Med., 284, 412–415 (1971).

    Article  CAS  Google Scholar 

  12. Ambani, L. M., Van Woert, M. H., and Bowers, M. B., jun., Arch. Neurol., 29, 444–446 (1973).

    Article  CAS  Google Scholar 

  13. Ambani, L. M., and Van Woert, M. H., Br. J. Pharmac., 46, 344–347 (1972).

    Article  CAS  Google Scholar 

  14. Van Woert, M. H., Ambani, L. M., and Bowers, M. B., jun., Neurology, 22, 86–93 (1972).

    Article  CAS  Google Scholar 

  15. Hornykiewicz, O., Pharm. Rev., 18, 925–964 (1966).

    CAS  Google Scholar 

  16. Glowinski, J., and Iverson, L. L., J. Neurochem., 13, 655–669 (1966).

    Article  CAS  Google Scholar 

  17. Jenden, D. J., Hanin, I., and Lamb, S. I., Analyt. Chem., 40, 125–128 (1968).

    Article  CAS  Google Scholar 

  18. Hanin, I., Massarelli, R., and Costa, E., J. Pharmac. exp. Ther., 181, 10–18 (1972).

    CAS  Google Scholar 

  19. Sethy, V. H., and Van Woert, M. H., Neuropharmacology, 12, 27–31 (1973).

    Article  CAS  Google Scholar 

  20. McLennan, H., and York, D. H., J. Physiol., Lond., 189, 393–402 (1967).

    Article  CAS  Google Scholar 

  21. Conner, J. D., J. Physiol., Lond., 208, 691–703 (1970).

    Article  Google Scholar 

  22. Sethy, V. H., Roth, R. H., Kuhar, M. J., and Van Woert, M. H., Neuropharmacology, 12, 819–823 (1973).

    Article  CAS  Google Scholar 

  23. Sethy, V. H., and Van Woert, M. H., Biochem. Pharmac., 22, 2685–2691 (1973).

    Article  CAS  Google Scholar 

  24. Stadler, H., Lloyd, K. G., Gadea-Ciria, M., and Bartholini, G., Brain Res., 55, 476–480 (1973).

    Article  CAS  Google Scholar 

  25. Jones, B. E., Guyenet, P., Cheramy, A., Gauchy, C., and Glowinski, J., Brain Res., 64, 355–369 (1973).

    Article  CAS  Google Scholar 

  26. Orzeck, A., and Barbeau, A., L-Dopa and parkinsonism (edit. by Barbeau, A., and McDowell, F. M.), 88–94 (Davis, Philadelphia, 1970).

    Google Scholar 

  27. Nashold, B. S., Proc. Soc. exp. Biol. Med., 101, 68–69 (1959).

    Article  Google Scholar 

  28. Pfeiffer, C. C., and Jenney, E. H., Ann. N. Y. Acad. Sci., 66, 753–764 (1957).

    Article  ADS  CAS  Google Scholar 

  29. Rosenthal, R., and Bigelow, L. B., Comp. Psychiat., 14, 489–494 (1973).

    Article  CAS  Google Scholar 

  30. Singh, M. M., and Smith, J. M., J. nerv. ment. Dis., 157, 50–58 (1973).

    Article  CAS  Google Scholar 

  31. Yaryura-Tobias, J. A., Wolpert, A., Dana, L., and Merlin, S., Dis. nerv. Syst., 31, 60–63 (1970).

    CAS  Google Scholar 

  32. Angrist, B., Sathananthan, G., and Gershon, S., Pscychopharmology, 31, 1–12 (1973).

    Article  CAS  Google Scholar 

  33. Janowsky, D. S., El-Yousef, M. K., Davis, J. M., and Sekerke, H. J., Am. J. Psychiat., 130, 1370–1376 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SETHY, V., WOERT, M. Regulation of striatal acetylcholine concentration by dopamine receptors. Nature 251, 529–530 (1974). https://doi.org/10.1038/251529a0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1038/251529a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing